OpenCV-Python函数汇总

1.OpenCV包的安装

        在python控制台中输入

pip install opencv-python

        或者访问官方网站https://opencv-python-tutroals.readthedocs.io/en/latest/

2.OpenCV简单图像处理

        2.1 图像像素存储形式

        对于灰度图,每个像素对应一个0到255的数字,表示明暗。0为最暗。

        对于采用RGB模式的彩图,每个像素对应一个三维向量,每个值代表该像素所含该颜色的多少。值得注意的是,OpenCV采用的是BGR模式,而不是RGB

        2.2 图像读取和写入

        图像的读取

imread(img_path,flag) 读取图片,返回图片对象
    img_path: 图片的路径,即使路径错误也不会报错,但打印返回的图片对象为None
    flag:cv2.IMREAD_COLOR,读取彩色图片,图片透明性会被忽略,为默认参数,也可以传入1
          cv2.IMREAD_GRAYSCALE,按灰度模式读取图像,也可以传入0
          cv2.IMREAD_UNCHANGED,读取图像,包括其alpha通道,也可以传入-1

        图像的显示

imshow(window_name,img):显示图片,窗口自适应图片大小
    window_name: 指定窗口的名字
    img:显示的图片对象
    可以指定多个窗口名称,显示多个图片
    
waitKey(millseconds)  键盘绑定事件,阻塞监听键盘按键,返回一个数字(不同按键对应的数字不同)
    millseconds: 传入时间毫秒数,在该时间内等待键盘事件;传入0时,会一直等待键盘事件
    
destroyAllWindows(window_name) 
    window_name: 需要关闭的窗口名字,不传入时关闭所有窗口

        图像的保存

imwrite(img_path_name,img)
    img_path_name:保存的文件名
    img:文件对象

        2.3 图像像素获取和编辑

        像素值获取

img = cv2.imread(r"C:\Users\Administrator\Desktop\roi.jpg")

#获取和设置
pixel = img[100,100]  #[57 63 68],获取(100,100)处的像素值
img[100,100]=[57,63,99] #设置像素值
b = img[100,100,0]    #57, 获取(100,100)处,blue通道像素值
g = img[100,100,1]    #63
r = img[100,100,2]      #68
r = img[100,100,2]=99    #设置red通道值

#获取和设置
piexl = img.item(100,100,2)
img.itemset((100,100,2),99)

        图片性质

import cv2
img = cv2.imread(r"C:\Users\Administrator\Desktop\roi.jpg")

#rows,cols,channels
img.shape   #返回(280, 450, 3), 宽280(rows),长450(cols),3通道(channels)
#size
img.size    #返回378000,所有像素数量,=280*450*3
#type
img.dtype   #dtype('uint8')

        ROI截取(感兴趣的区域)

#ROI,Range of instrest
roi = img[100:200,300:400]  #截取100行到200行,列为300到400列的整块区域
img[50:150,200:300] = roi   #将截取的roi移动到该区域 (50到100行,200到300列)
b = img[:,:,0]  #截取整个蓝色通道

b,g,r = cv2.split(img) #截取三个通道,比较耗时
img = cv2.merge((b,g,r))

        2.4添加边界

cv2.copyMakeBorder()
    参数:
        img:图像对象
        top,bottom,left,right: 上下左右边界宽度,单位为像素值
        borderType:
            cv2.BORDER_CONSTANT, 带颜色的边界,需要传入另外一个颜色值
            cv2.BORDER_REFLECT, 边缘元素的镜像反射做为边界
            cv2.BORDER_REFLECT_101/cv2.BORDER_DEFAULT
            cv2.BORDER_REPLICATE, 边缘元素的复制做为边界
            CV2.BORDER_WRAP
        value: borderType为cv2.BORDER_CONSTANT时,传入的边界颜色值,如[0,255,0]

        2.5 像素算术运算

         cv2.add()  相加的两个图片,应该有相同的大小和通道

cv2.add()
    参数:
        img1:图片对象1
        img2:图片对象2
        mask:None (掩膜,一般用灰度图做掩膜,img1和img2相加后,和掩膜与运算,从而达到掩盖部分区域的目的)
        dtype:-1

注意:图像相加时应该用cv2.add(img1,img2)代替img1+img2    
        >>> x = np.uint8([250])
        >>> y = np.uint8([10])
        >>> print cv2.add(x,y) # 250+10 = 260 => 255  #相加,opencv超过255的截取为255
        [[255]]
        >>> print x+y          # 250+10 = 260 % 256 = 4  #相加,np超过255的会取模运算 (uint8只能表示0-255,所以取模)
        [4]

        cv.addWeight(): 两张图片相加,分别给予不同权重,实现图片融合和透明背景等效果

cv2.addWeighted() 两张图片相加,分别给予不同权重,实现图片融合和透明背景等效果
    参数:
        img1:图片对象1
        alpha:img1的权重
        img2:图片对象2
        beta:img1的权重
        gamma:常量值,图像相加后再加上常量值
        dtype:返回图像的数据类型,默认为-1,和img1一样
    (img1*alpha+img2*beta+gamma)

        2.6 图像位运算

cv2.btwise_and(): 与运算
    参数:
        img1:图片对象1
        img2:图片对象2
        mask:掩膜
    cv2.bitwise_or():或运算
    参数:
        img1:图片对象1
        img2:图片对象2
        mask:掩膜
    cv2.bitwise_not(): 非运算
        img1:图片对象1
        mask:掩膜
    cv2.bitwise_xor():异或运算,相同为1,不同为0(1^1=0,1^0=1)
        img1:图片对象1
        img2:图片对象2
        mask:掩膜

        2.7 图像颜色空间转换

cv2.cvtColor()
    参数:
        img: 图像对象
        code:
            cv2.COLOR_RGB2GRAY: RGB转换到灰度模式
            cv2.COLOR_RGB2HSV: RGB转换到HSV模式(hue,saturation,Value)
cv2.inRange()
    参数:
        img: 图像对象/array
        lowerb: 低边界array,  如lower_blue = np.array([110,50,50])
        upperb:高边界array, 如 upper_blue = np.array([130,255,255])
    mask = cv2.inRange(hsv, lower_green, upper_green)

        2.8 性能评价

        cv2.getTickCount(): 获得时钟次数

        cv2.getTickFrequency():获得时钟频率 (每秒振动次数)

img1 = cv2.imread('messi5.jpg')

e1 = cv2.getTickCount()
for i in xrange(5,49,2):
    img1 = cv2.medianBlur(img1,i)
e2 = cv2.getTickCount()
t = (e2 - e1)/cv2.getTickFrequency()
print t

        2.9 绑定trackbar到图像

cv2.createTrackbar() 为窗口添加trackbar
    参数:
        trackbarname: trackbar的名字
        winname: 窗口的名字
        value: trackbar创建时的值
        count:trackbar能设置的最大值,最小值总为0
        onChange:trackbar值发生变化时的回调函数,trackbar的值作为参数传给onchange
        
    cv2.getTrackbarPos() 获取某个窗口中trackbar的值
    参数:
        trackbarname: trackbar的名字
        winname: 窗口的名字

3.图像阈值化

cv2.threshold(): 
参数:
    img:图像对象,必须是灰度图
    thresh:阈值
    maxval:最大值
    type:
        cv2.THRESH_BINARY:     小于阈值的像素置为0,大于阈值的置为maxval
        cv2.THRESH_BINARY_INV: 小于阈值的像素置为maxval,大于阈值的置为0
        cv2.THRESH_TRUNC:      小于阈值的像素不变,大于阈值的置为thresh
        cv2.THRESH_TOZERO       小于阈值的像素置0,大于阈值的不变
        cv2.THRESH_TOZERO_INV   小于阈值的不变,大于阈值的像素置0
返回两个值
    ret:阈值
    img:阈值化处理后的图像
    
cv2.adaptiveThreshold() 自适应阈值处理,图像不同部位采用不同的阈值进行处理
参数:
    img: 图像对象,8-bit单通道图
    maxValue:最大值
    adaptiveMethod: 自适应方法
        cv2.ADAPTIVE_THRESH_MEAN_C     :阈值为周围像素的平均值
        cv2.ADAPTIVE_THRESH_GAUSSIAN_C : 阈值为周围像素的高斯均值(按权重)
    threshType:
        cv2.THRESH_BINARY:     小于阈值的像素置为0,大于阈值的置为maxValuel
        cv2.THRESH_BINARY_INV:  小于阈值的像素置为maxValue,大于阈值的置为0
    blocksize: 计算阈值时,自适应的窗口大小,必须为奇数 (如3:表示附近3个像素范围内的像素点,进行计算阈值)
    C: 常数值,通过自适应方法计算的值,减去该常数值
(mean value of the blocksize*blocksize neighborhood of (x, y) minus C)

4.图像变换

        4.1 图像缩放

cv2.resize() 放大和缩小图像
    参数:
        src: 输入图像对象
        dsize:输出矩阵/图像的大小,为0时计算方式如下:dsize = Size(round(fx*src.cols),round(fy*src.rows))
        fx: 水平轴的缩放因子,为0时计算方式:  (double)dsize.width/src.cols
        fy: 垂直轴的缩放因子,为0时计算方式:  (double)dsize.heigh/src.rows
        interpolation:插值算法
            cv2.INTER_NEAREST : 最近邻插值法
            cv2.INTER_LINEAR   默认值,双线性插值法
            cv2.INTER_AREA        基于局部像素的重采样(resampling using pixel area relation)。对于图像抽取(image decimation)来说,这可能是一个更好的方法。但如果是放大图像时,它和最近邻法的效果类似。
            cv2.INTER_CUBIC        基于4x4像素邻域的3次插值法
            cv2.INTER_LANCZOS4     基于8x8像素邻域的Lanczos插值
                     
    cv2.INTER_AREA 适合于图像缩小, cv2.INTER_CUBIC (slow) & cv2.INTER_LINEAR 适合于图像放大

        4.2 仿射变换

cv2.warpAffine()   仿射变换(从二维坐标到二维坐标之间的线性变换,且保持二维图形的“平直性”和“平行性”。仿射变换可以通过一系列的原子变换的复合来实现,包括平移,缩放,翻转,旋转和剪切)
    参数:
        img: 图像对象
        M:2*3 transformation matrix (转变矩阵)
        dsize:输出矩阵的大小,注意格式为(cols,rows)  即width对应cols,height对应rows
        flags:可选,插值算法标识符,有默认值INTER_LINEAR,
               如果插值算法为WARP_INVERSE_MAP, warpAffine函数使用如下矩阵进行图像转dst(x,y)=src(M11*x+M12*y+M13,M21*x+M22*y+M23)
        borderMode:可选, 边界像素模式,有默认值BORDER_CONSTANT 
        borderValue:可选,边界取值,有默认值Scalar()即0

你可能感兴趣的:(opencv,python,计算机视觉)