数字信号实验:使用C++与OpenCV实现DCT变换压缩图片

# include

# include

# include

# include

#include

#include

#include

# define N 8

# define PI 3.1415926

using namespace std;

using namespace cv;

void dct2(Mat& A, Mat& AT, Mat& image, Mat&  );              //dct正变换 

void f_dct2(Mat& A, Mat& AT, Mat& image);                   //dct反变换

Mat TMatrix(Mat, int);                                      //转置矩阵

Mat dctmtx(int n);                                          //返回N×N的DCT变换矩阵

Mat compression(int,int,Mat image);                         //图像单通道压缩函数

int main() {

    int i, j;

    vector<Mat>channels;

    //Opencv读入图片,分别用于压缩和比较

    Mat Image = imread("bottle477.jpg");

    Mat ori_Image = imread("bottle477.jpg");

    Image.convertTo(Image, CV_64F);

    //分离彩色通道

    split(Image, channels);

    Mat imageBlueChannel = channels.at(0);

    Mat imageGreenChannel = channels.at(1);

    Mat imageRedChannel = channels.at(2);

    merge(channels, Image);

    //R,G,B三通道分别进行压缩

    Mat B = compression(Image.cols, Image.rows,imageBlueChannel);

    Mat G = compression(Image.cols, Image.rows,imageGreenChannel);

    Mat R = compression(Image.cols, Image.rows,imageRedChannel);

    //三通道合并

    channels.at(0) = Mat_<uchar>(B);

    channels.at(1) = Mat_<uchar>(G);

    channels.at(2) = Mat_<uchar>(R);

    merge(channels, Image);

    imshow("DstImage",Image);

    imshow("OriImage", ori_Image);

    waitKey(0);

    return 0;

}

Mat compression(int r, int c, Mat image) {

    Mat A = dctmtx(N);

    Mat AT = TMatrix(A, N);

    //Mask定义

    Mat Mask = (Mat_<double>(N, N)

        <<  1, 1, 1, 0, 0, 0, 0, 0,

             1, 1, 0, 0, 0, 0, 0, 0,

             1, 0, 0, 0, 0, 0, 0, 0,

             0, 0, 0, 0, 0, 0, 0, 0,

             0, 0, 0, 0, 0, 0, 0, 0,

             0, 0, 0, 0, 0, 0, 0, 0,

             0, 0, 0, 0, 0, 0, 0, 0,

             0, 0, 0, 0, 0, 0, 0, 0);

   

    //DCT变换和Mask矩阵量化

    dct2(A, AT, image, Mask);

    //DCT逆变换

    f_dct2(A, AT, image);

    return image;

}

//生成转换矩阵

Mat dctmtx(int num) {

    int i, j;

    //初始化矩阵,定义矩阵

    Mat A = Mat::zeros(N, N, CV_64F);

    //按照公式,生成正交矩阵A

    double x0 = sqrt(1.0 / num);

    double x1 = sqrt(2.0 / num);

    for (i = 0; i < N; ++i) {

        for (j = 0; j < N; ++j) {

             if (i == 0) {

                 A.at<double>(i,j) =  x0 * cos((2 * j + 1) * PI * i / (2 * N));

             }

             else {

                 A.at<double>(i, j) = x1 * cos((2 * j + 1) * PI * i / (2 * N));

             }

        }

    }

    return A;

}

//矩阵转置

Mat TMatrix(Mat A, int n) {

    int i, j;

    Mat tmp;

    tmp = Mat::zeros(A.size(), A.type());

    for (j = 0; j < n; ++j)

        for (i = 0; i < n; ++i)

             tmp.at<double>(i, j) = A.at<double>(j, i);

    return tmp;

}

//DCT变换

void dct2(Mat& A,Mat& AT, Mat& image, Mat& mask) {

    for (int i = 0; i < (image.rows - image.rows % N); i += N) {

        for (int j = 0; j < (image.cols - image.cols % N); j += N) {

             image(Range(i, i + N), Range(j, j + N)) = A * image(Range(i, i + N), Range(j, j + N)) * AT;

             image(Range(i, i + N), Range(j, j + N)) = mask.mul(image(Range(i, i + N), Range(j, j + N)));

        }

    }

}

//DCT逆变换

void f_dct2(Mat& A, Mat& AT, Mat& image) {

    for (int i = 0; i < (image.rows - image.rows % N); i += N) {

        for (int j = 0; j < (image.cols - image.cols % N); j += N) {

             image(Range(i, i + N), Range(j, j + N)) = AT * image(Range(i, i + N), Range(j, j + N)) * A;

        }

    }

}

数字信号实验:使用C++与OpenCV实现DCT变换压缩图片_第1张图片

你可能感兴趣的:(opencv,c++,计算机视觉)