tf.data.Dataset.from_tensor_slices(tensors, name=None)
该函数的作用是接收tensor,对tensor的第一维度进行切分,并返回一个表示该tensor的切片数据集
# Slicing a 1D tensor produces scalar tensor elements.
import tensorflow as tf
dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3])
print(dataset)
print(list(dataset.as_numpy_iterator()))
import tensorflow as tf
# Slicing a 2D tensor produces 1D tensor elements.
dataset = tf.data.Dataset.from_tensor_slices([[1, 2], [3, 4]])
print(dataset)
print(list(dataset.as_numpy_iterator()))
import tensorflow as tf
# Dictionary structure is also preserved.
dataset = tf.data.Dataset.from_tensor_slices({"a": [1, 2], "b": [3, 4]})
print(dataset)
print(list(dataset.as_numpy_iterator()))
import tensorflow as tf
import numpy as np
x = np.random.uniform(size=(5, 2))
#print(x)
dataset = tf.data.Dataset.from_tensor_slices(x)
for ele in dataset:
print(ele)
import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
def load_dataset():
# Step0 准备数据集, 可以是自己动手丰衣足食, 也可以从 tf.keras.datasets 加载需要的数据集(获取到的是numpy数据)
# 这里以 mnist 为例
(x, y), (x_test, y_test) = keras.datasets.mnist.load_data()
# Step1 使用 tf.data.Dataset.from_tensor_slices 进行加载
db_train = tf.data.Dataset.from_tensor_slices((x,y))
db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))
# Step2 打乱数据
db_train.shuffle(1000)
db_test.shuffle(1000)
# Step3 预处理 (预处理函数在下面)
db_train.map(preprocess)
db_test.map(preprocess)
# Step4 设置 batch size 一次喂入64个数据
db_train.batch(64)
db_test.batch(64)
# Step5 设置迭代次数(迭代2次) test数据集不需要emmm
db_train.repeat(2)
return db_train, db_test
def preprocess(labels, images):
'''
最简单的预处理函数:
转numpy为Tensor、分类问题需要处理label为one_hot编码、处理训练数据
'''
# 把numpy数据转为Tensor
labels = tf.cast(labels, dtype=tf.int32)
# labels 转为one_hot编码
labels = tf.one_hot(labels, depth=10)
# 顺手归一化
images = tf.cast(images, dtype=tf.float32) / 255
return labels, images
train,test=load_dataset()
for image in train:
print(type(image))
image=np.array(image)
# print(image)
print(image[0].shape)
plt.axis('off')
plt.imshow(image[0],cmap='gray')
plt.show()
break
import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
def load_dataset():
# Step0 准备数据集, 可以是自己动手丰衣足食, 也可以从 tf.keras.datasets 加载需要的数据集(获取到的是numpy数据)
# 这里以 mnist 为例
(x, y), (x_test, y_test) = keras.datasets.mnist.load_data()
# Step1 使用 tf.data.Dataset.from_tensor_slices 进行加载
db_train = tf.data.Dataset.from_tensor_slices((x,y))
db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))
# Step2 打乱数据
db_train.shuffle(1000)
db_test.shuffle(1000)
# Step3 预处理 (预处理函数在下面)
db_train.map(preprocess)
db_test.map(preprocess)
# Step4 设置 batch size 一次喂入64个数据
db_train.batch(64)
db_test.batch(64)
# Step5 设置迭代次数(迭代2次) test数据集不需要emmm
db_train.repeat(2)
return db_train, db_test
def preprocess(labels, images):
'''
最简单的预处理函数:
转numpy为Tensor、分类问题需要处理label为one_hot编码、处理训练数据
'''
# 把numpy数据转为Tensor
labels = tf.cast(labels, dtype=tf.int32)
# labels 转为one_hot编码
labels = tf.one_hot(labels, depth=10)
# 顺手归一化
images = tf.cast(images, dtype=tf.float32) / 255
return labels, images
train,test=load_dataset()
for image in train.as_numpy_iterator():
print(image[0])
image=np.array(image[0])
print(image.shape)
plt.imshow(image,cmap='gray')
plt.show()
break
使用tf.data.Dataset.from_tensor_slices五步加载数据集_rainweic的博客-CSDN博客