机器学习保姆级入门案例-波士顿房价预测

利用scikit-learn进行机器学习入门案例

相信很多人都是知道波士顿房价的数据集,一个非常经典的机器学习入门案例数据集。在这个案例中直接使用sklearn中自带的数据集来进行数据分析和建模,主要内容包含:

  • 数据探索
  • 相关性分析
  • 变量研究
  • 线性回归模型探索
  • 模型改进

机器学习保姆级入门案例-波士顿房价预测_第1张图片

导入库

import numpy as np 
import pandas as pd 
import hvplot.pandas
import matplotlib.pyplot as plt
%matplotlib inline
# 使输出的图像以更高清的方式显示
%config InlineBackend.figure_format = 'retina'
import seaborn as sns
# plt.style.use('ggplot') 
plt.style.use("fivethirtyeight")
# Pandas中只显示3位小数
pd.set_option('display.float_format', lambda x: '{:.3f}'.format(x)) 

from sklearn import datasets  # 导入数据集
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

import warnings

导入内置数据

导数据

从sklearn中导入内置的波士顿房价数据集:

boston = datasets.load_boston()
X = boston.data   # 特征值
y = boston.target  # 目标变量

df = pd.DataFrame(
    X,
    columns = boston.feature_names
)
df.head()

机器学习保姆级入门案例-波士顿房价预测_第2张图片

df["MEDV"] = y
df.head()

机器学习保姆级入门案例-波士顿房价预测_第3张图片

查看数据字段、类型:

机器学习保姆级入门案例-波士顿房价预测_第4张图片

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):
 #   Column   Non-Null Count  Dtype  
---  ------   --------------  -----  
 0   CRIM     506 non-null    float64
 1   ZN       506 non-null    float64
 2   INDUS    506 non-null    float64
 3   CHAS     506 non-null    float64
 4   NOX      506 non-null    float64
 5   RM       506 non-null    float64
 6   AGE      506 non-null    float64
 7   DIS      506 non-null    float64
 8   RAD      506 non-null    float64
 9   TAX      506 non-null    float64
 10  PTRATIO  506 non-null    float64
 11  B        506 non-null    float64
 12  LSTAT    506 non-null    float64
 13  MEDV     506 non-null    float64
dtypes: float64(14)
memory usage: 55.5 KB

字段说明

字段对应的中文解释,来自网上的说明:

  • CRIM:城镇人均犯罪率
  • ZN: 占地面积超过2.5万平方英尺的住宅用地比例
  • INDUS:城镇上非零售业务地区的 比例
  • CHAS:虚拟变量;如果土地在查尔斯河,取值1;否则为0
  • NOX:一氧化氮浓度
  • RM:平均每个居民房数
  • AGE:在1940年之前建成的所有者占用单位的比例
  • DIS: 与波士顿的5个就业中心之间的加权距离
  • RAD: 辐距离住房最近的公路入口编号
  • TAX:每10,000美元的全额物业税
  • PTRATIO:城镇师生比例大小
  • B:1000(Bk-0.63)^2,其中 Bk 指代城镇中黑人的比例
  • LSTAT:全部人口中地位较低人群的百分数大小
  • MEDV:目标变量,以1000美元来进行计算的自由住房的中位数大小

基本信息

数据形状和缺失值情况:

机器学习保姆级入门案例-波士顿房价预测_第5张图片

统计信息

数据统计信息主要是针对数值型的字段。这个案例中的数据刚刚好都是数值型字段,能够迅速看到每个字段的:中值、方差、最小值、四分之一分位数等

机器学习保姆级入门案例-波士顿房价预测_第6张图片

相关性检验

计算相关系数

机器学习保姆级入门案例-波士顿房价预测_第7张图片

绘制相关系数的热力分布图:

机器学习保姆级入门案例-波士顿房价预测_第8张图片

查看每个特征和目标变量MEDV之间的相关系数:

corr["MEDV"].sort_values()

LSTAT     -0.738
PTRATIO   -0.508
INDUS     -0.484
TAX       -0.469
NOX       -0.427
CRIM      -0.388
RAD       -0.382
AGE       -0.377
CHAS       0.175
DIS        0.250
B          0.333
ZN         0.360
RM         0.695
MEDV       1.000
Name: MEDV, dtype: float64

从绝对值的角度来看:LSTAT、RM、PTRATIO这3个字段是最具有相关性的~

多变量研究

研究不同自变量之间、自变量和因变量之间的关系

sns.pairplot(df[["LSTAT","INDUS","PTRATIO","MEDV"]]) # 绝对值靠前3的特征
plt.show()

机器学习保姆级入门案例-波士顿房价预测_第9张图片

数据集划分

划分给定的数据集,比例是8:2

X = df.drop("MEDV",axis=1)
y = df[["MEDV"]]

X_train, X_test, y_train, y_test = train_test_split(
    X, y, 
    test_size=0.2, 
    random_state=123)

机器学习保姆级入门案例-波士顿房价预测_第10张图片

线性回归模型(重点)

将506个样本13个特征组成的矩阵赋值给变量X,变量X为大写字母的原因是数学中表示矩阵使用大写字母。 将506个样本1个预测目标值组成的矩阵赋值给变量 Y。

表中13列数据就是13个是样本特征(属性),机器学习的目的就是得到一个线性回归模型,即:
Y = θ 0 + θ 1 × X 1 + θ 2 × X 2 + θ 3 × X 3 + ⋯ + θ 13 × X 13 Y=\theta_{0}+\theta_{1} \times X_{1}+\theta_{2} \times X_{2}+\theta_{3} \times X_{3}+\cdots+\theta_{13} \times X_{13} Y=θ0+θ1×X1+θ2×X2+θ3×X3++θ13×X13
线性回归模型需要学习的就是$ \theta_{0}, \theta_{1}, \theta_{2}, \cdots \theta_{13} $这14个参数,然后将y用这个13个参数来表示。

建模

from sklearn.linear_model import LinearRegression
# 模型实例化
le = LinearRegression()
# 拟合过程
le.fit(X_train, y_train)
# 得到回归系数
coef1 = le.coef_  # 13个回归系数
coef1

array([[-9.87931696e-02,  4.75027102e-02,  6.69491841e-02,
         1.26954150e+00, -1.54697747e+01,  4.31968412e+00,
        -9.80167937e-04, -1.36597953e+00,  2.84521838e-01,
        -1.27533606e-02, -9.13487599e-01,  7.22553507e-03,
        -5.43790245e-01]])

预测

# 对测试集的数据进行预测
predict1 = le.predict(X_test)  
predict1[:5]

array([[16.00330023],
       [27.79447431],
       [39.26769478],
       [18.32613556],
       [30.45487494]])

指标得分

主要是考察两个指标的得分:

  • 在测试集上的得分score
  • 测试数据和预测数据之间的RMSE得分
# 得分
print("Score:", le.score(X_test, y_test))
print("RSME:", np.sqrt(mean_squared_error(y_test, predict1)))
Score: 0.65924665103541
RSME: 5.309659665032168

回归系数

下面是本次建模案例得到的13个回归系数:

coef1

# 结果
array([[-9.87931696e-02,  4.75027102e-02,  6.69491841e-02,
         1.26954150e+00, -1.54697747e+01,  4.31968412e+00,
        -9.80167937e-04, -1.36597953e+00,  2.84521838e-01,
        -1.27533606e-02, -9.13487599e-01,  7.22553507e-03,
        -5.43790245e-01]])
le_df = pd.DataFrame()

le_df["name"] = X.columns.tolist()
le_df["coef"] = coef1.reshape(-1,1)

le_df

机器学习保姆级入门案例-波士顿房价预测_第11张图片

真实值和预测值的对比

test_pre = pd.DataFrame({"test": y_test["MEDV"].tolist(),
                         "pre": predict1.flatten()
                        })
test_pre

机器学习保姆级入门案例-波士顿房价预测_第12张图片

test_pre.plot(figsize=(18,10))
plt.show()

机器学习保姆级入门案例-波士顿房价预测_第13张图片

我们对比真实值和预测值的大小,发现:有42.15%左右的测试集中真实值是大于预测值

机器学习保姆级入门案例-波士顿房价预测_第14张图片

结论1

通过上面的结果我们发现:

  • 超过半数的预测值是比真实值要大的,预测的房价偏高
  • 波士顿房价的数据比较干净,预处理和特征工程部分的工作相对会少一些,上面的建模过程几乎没有涉及到太多特征工程的工作

模型评价

测试集上评价

将真实值和预测值的散点分布图画在坐标轴上

plt.scatter(y_test, predict1, label="test")
plt.plot([y_test.min(), y_test.max()],
         [y_test.min(), y_test.max()],
         'k--',
         lw=3,
         label="predict"
        )

plt.show()

机器学习保姆级入门案例-波士顿房价预测_第15张图片

从上图中看到:

  • 在10-30之间的房价预测的更为准确些
  • 当超过30后,预测的结果会偏小;上面的统计结果页表明,预测值会大于真实值

整体数据集评价

我们对整个数据集X上进行建模:

predict_all = le.predict(X)

print("Score:", le.score(X, y))  # 统一换成整体数据集
print("RSME:", np.sqrt(mean_squared_error(y, predict_all)))
Score: 0.7371217459477342
RSME: 4.710845521793303

比较整体数据集上的真实值和预测值:

all_pre = pd.DataFrame({"test": y["MEDV"].tolist(),
                         "pre": predict_all.flatten()
                        })
all_pre

机器学习保姆级入门案例-波士顿房价预测_第16张图片

all_pre.plot(figsize=(18,10))
plt.show()

机器学习保姆级入门案例-波士顿房价预测_第17张图片

plt.scatter(y, predict_all, label="y_all")
plt.plot([y.min(), y.max()],
         [y.min(), y.max()],
         'k--',
         lw=3,
         label="all_predict"
        )

plt.show()

机器学习保姆级入门案例-波士顿房价预测_第18张图片

模型改进

数据标准化

from sklearn.preprocessing import StandardScaler
# 实例化
ss = StandardScaler()
# 特征数据
X = ss.fit_transform(X)
# 目标变量
y = ss.fit_transform(y)
# 先切分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=9)

机器学习保姆级入门案例-波士顿房价预测_第19张图片

决策树回归

from sklearn.tree import DecisionTreeRegressor

tr = DecisionTreeRegressor(max_depth=2) 

tr.fit(X_train, y_train) 
# 预测值 
tr_pre = tr.predict(X_test)

# 模型评分 
print('Score:{:.4f}'.format(tr.score(X_test, y_test)))
# RMSE(标准误差)
print('RMSE:{:.4f}'.format(np.sqrt(mean_squared_error(y_test,tr_pre))))
Score:0.7184
RMSE:0.5810

GradientBoosting(梯度提升)

from sklearn import ensemble

gb = ensemble.GradientBoostingRegressor()

gb.fit(X_train, y_train)
gb_pre=gb.predict(X_test) 

# 模型评分 
print('Score:{:.4f}'.format(gb.score(X_test, y_test)))
# RMSE(标准误差)
print('RMSE:{:.4f}'.format(np.sqrt(mean_squared_error(y_test,gb_pre))))
Score:0.9024
RMSE:0.3421

目前效果是最好的~

Lasso回归

Lasso的全称是:Least Absolute Shrinkage and Selection Operator

Lasso也是惩罚其回归系数的绝对值;另外一种方式岭回归,使用的是平方形式

from sklearn.linear_model import Lasso

lo = Lasso()

lo.fit(X_train, y_train)
lo_pre=lo.predict(X_test) 

# 模型评分 
print('Score:{:.4f}'.format(lo.score(X_test, y_test)))
# RMSE(标准误差)
print('RMSE:{:.4f}'.format(np.sqrt(mean_squared_error(y_test,lo_pre))))
Score:-0.0001
RMSE:1.0949

SVR-支持向量回归

from sklearn.svm import SVR

linear_svr = SVR(kernel="linear")
linear_svr.fit(X_train, y_train)
linear_svr_pre = linear_svr.predict(X_test)

# 模型评分 
print('Score:{:.4f}'.format(linear_svr.score(X_test, y_test)))
# RMSE(标准误差)
print('RMSE:{:.4f}'.format(np.sqrt(mean_squared_error(y_test,linear_svr_pre))))
Score:0.7200
RMSE:0.5793

结论2

对数据进行标准化和采用不同的回归模型后,发现:

  • 采用Gradient Boosting 算法的话,效果是最好的。最终的评分高达0.9017
  • 在机器学习建模的过程中,数据预处理方案和特征工程的设计是很重要的,对我们最终的效果会有很大的影响

在实际工作项目中也是如此,数据预处理、特征工程、筛选有效的特征会花费数据工程师很多的精力~

你可能感兴趣的:(kaggle,机器学习,机器学习,sklearn,python)