《MATLAB智能算法30个案例分析》是2011年7月1日由北京航空航天大学出版社出版的图书,作者是郁磊、史峰、王辉、胡斐。本书案例是各位作者多年从事算法研究的经验总结。书中所有案例均因国内各大MATLAB技术论坛网友的切身需求而精心设计,其中不少案例所涉及的内容和求解方法在国内现已出版的MATLAB书籍中鲜有介绍。《MATLAB智能算法30个案例分析》采用案例形式,以智能算法为主线,讲解了遗传算法、免疫算法、退火算法、粒子群算法、鱼群算法、蚁群算法和神经网络算法等最常用的智能算法的MATLAB实现。
本书共给出30个案例,每个案例都是一个使用智能算法解决问题的具体实例,所有案例均由理论讲解、案例背景、MATLAB程序实现和扩展阅读四个部分组成,并配有完整的原创程序,使读者在掌握算法的同时更能快速提高使用算法求解实际问题的能力。《MATLAB智能算法30个案例分析》可作为本科毕业设计、研究生项目设计、博士低年级课题设计参考书籍,同时对广大科研人员也有很高的参考价值。
《MATLAB智能算法30个案例分析》与《MATLAB 神经网络43个案例分析》一样,都是由北京航空航天大学出版社出版,其中的智能算法应该是属于神经网络兴起之前的智能预测分类算法的热门领域,在数字信号处理,如图像和语音相关方面应用较为广泛。本系列文章结合MATLAB与实际案例进行仿真复现,有不少自己在研究生期间与工作后的学习中有过相关学习应用,这次复现仿真示例进行学习,希望可以温故知新,加强并提升自己在智能算法方面的理解与实践。下面开始进行仿真示例,主要以介绍各章节中源码应用示例为主,本文主要基于MATLAB2015b(32位)平台仿真实现,这是本书第三十章极限学习机的回归拟合及分类——对比实验研究示例,话不多说,开始!
打开MATLAB,点击“主页”,点击“打开”,找到示例文件
选中main.m,点击“打开”
main.m源码如下:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%功能:极限学习机的回归拟合及分类——对比实验研究示例
%环境:Win7,Matlab2015b
%Modi: C.S
%时间:2022-07-09
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 清空环境
clc
clear all
close all
tic
%% 第30章 极限学习机的回归拟合及分类——对比实验研究
% <html>
% <table border="0" width="600px" id="table1"> <tr> <td><b><font size="2">该案例作者申明:</font></b></td> </tr> <tr><td><span class="comment"><font size="2">1:本人长期驻扎在此<a target="_blank" href="http://www.matlabsky.com/forum-78-1.html"><font color="#0000FF">板块</font></a>里,对该案例提问,做到有问必答。</font></span></td></tr><tr> <td><span class="comment"><font size="2">2</font><font size="2">:此案例有配套的教学视频,视频下载请点击<a href="http://www.matlabsky.com/forum-91-1.html">http://www.matlabsky.com/forum-91-1.html。 3:此案例为原创案例,转载请注明出处(《MATLAB智能算法30个案例分析》)。 4:若此案例碰巧与您的研究有关联,我们欢迎您提意见,要求等,我们考虑后可以加在案例里。 5:以下内容为初稿,与实际发行的书籍内容略有出入,请以书籍中的内容为准。
% </html>
%% Part1:ELM的回归拟合——基于近红外光谱的汽油辛烷值预测
%% 训练集/测试集产生
load spectra_data.mat
% 随机产生训练集和测试集
temp = randperm(size(NIR,1));
% 训练集——50个样本
P_train = NIR(temp(1:50),:)';
T_train = octane(temp(1:50),:)';
% 测试集——10个样本
P_test = NIR(temp(51:end),:)';
T_test = octane(temp(51:end),:)';
N = size(P_test,2);
%% 数据归一化
% 训练集
[Pn_train,inputps] = mapminmax(P_train);
Pn_test = mapminmax('apply',P_test,inputps);
% 测试集
[Tn_train,outputps] = mapminmax(T_train);
Tn_test = mapminmax('apply',T_test,outputps);
%% ELM创建/训练
[IW,B,LW,TF,TYPE] = elmtrain(Pn_train,Tn_train,30,'sig',0);
%% ELM仿真测试
tn_sim = elmpredict(Pn_test,IW,B,LW,TF,TYPE);
% 反归一化
T_sim = mapminmax('reverse',tn_sim,outputps);
%% 结果对比
result = [T_test' T_sim'];
% 均方误差
E = mse(T_sim - T_test);
% 决定系数
N = length(T_test);
R2=(N*sum(T_sim.*T_test)-sum(T_sim)*sum(T_test))^2/((N*sum((T_sim).^2)-(sum(T_sim))^2)*(N*sum((T_test).^2)-(sum(T_test))^2));
%% 绘图
figure(1)
plot(1:N,T_test,'r-*',1:N,T_sim,'b:o')
grid on
legend('真实值','预测值')
xlabel('样本编号')
ylabel('辛烷值')
string = {'测试集辛烷值含量预测结果对比(ELM)';['(mse = ' num2str(E) ' R^2 = ' num2str(R2) ')']};
title(string)
%% Part2:ELM的分类——鸢尾花种类识别
clear all
clc
%% 训练集/测试集产生
load iris_data.mat
% 随机产生训练集和测试集
P_train = [];
T_train = [];
P_test = [];
T_test = [];
for i = 1:3
temp_input = features((i-1)*50+1:i*50,:);
temp_output = classes((i-1)*50+1:i*50,:);
n = randperm(50);
% 训练集——120个样本
P_train = [P_train temp_input(n(1:40),:)'];
T_train = [T_train temp_output(n(1:40),:)'];
% 测试集——30个样本
P_test = [P_test temp_input(n(41:50),:)'];
T_test = [T_test temp_output(n(41:50),:)'];
end
%% ELM创建/训练
[IW,B,LW,TF,TYPE] = elmtrain(P_train,T_train,20,'sig',1);
%% ELM仿真测试
T_sim_1 = elmpredict(P_train,IW,B,LW,TF,TYPE);
T_sim_2 = elmpredict(P_test,IW,B,LW,TF,TYPE);
%% 结果对比
result_1 = [T_train' T_sim_1'];
result_2 = [T_test' T_sim_2'];
% 训练集正确率
k1 = length(find(T_train == T_sim_1));
n1 = length(T_train);
Accuracy_1 = k1 / n1 * 100;
disp(['训练集正确率Accuracy = ' num2str(Accuracy_1) '%(' num2str(k1) '/' num2str(n1) ')'])
% 测试集正确率
k2 = length(find(T_test == T_sim_2));
n2 = length(T_test);
Accuracy_2 = k2 / n2 * 100;
disp(['测试集正确率Accuracy = ' num2str(Accuracy_2) '%(' num2str(k2) '/' num2str(n2) ')'])
%% 绘图
figure(2)
plot(1:30,T_test,'bo',1:30,T_sim_2,'r-*')
grid on
xlabel('测试集样本编号')
ylabel('测试集样本类别')
string = {'测试集预测结果对比(ELM)';['(正确率Accuracy = ' num2str(Accuracy_2) '%)' ]};
title(string)
legend('真实值','ELM预测值')
toc
%%
% <html>
% <table width="656" align="left" > <tr><td align="center"><p align="left"><font size="2">相关论坛:</font></p><p align="left"><font size="2">Matlab技术论坛:<a href="http://www.matlabsky.com">www.matlabsky.com</a></font></p><p align="left"><font size="2">M</font><font size="2">atlab函数百科:<a href="http://www.mfun.la">www.mfun.la</a></font></p></td> </tr></table>
% </html>
添加完毕,点击“运行”,开始仿真,输出仿真结果如下:
训练集正确率Accuracy = 98.3333%(118/120)
测试集正确率Accuracy = 93.3333%(28/30)
时间已过 2.327138 秒。
前向神经网络(feed-forward neural networks)的训练速度比人们所期望的速度要慢很多。并且,在过去的几十年中,前向神经网络在应用领域存在着很大的瓶颈。导致这一现状的两个关键因素就是:
在2004年,由南洋理工学院黄广斌教授所提出的极限学习机器(Extreme Learning Machine,ELM)理论可以改善这种情况。最初的极限学习机是对单隐层前馈神经网络(single-hidden layer feed-forward neural networks,SLFNs)提出的一种新型的学习算法。它随机选取输入权重,并分析以决定网络的输出权重。对本章内容感兴趣或者想充分学习了解的,建议去研习书中第三十章节的内容。后期会对其中一些知识点在自己理解的基础上进行补充,欢迎大家一起学习交流。