2009年诺华公司的研究员Ertl和Schuffenhauer在化学信息学杂志上发表了名为SAscore的Rdkit插件用于快速评估药物分子的合成难易程度。
评价指标:其将小分子合成难易程度用1到10区间数值进行评价,越靠近1表明越容易合成,越靠近10表明合成越困难。
计算公式:其计算权重为化合物的片段贡献减去复杂程度(SAscore =fragmentScore − complexityPenalty),其中片段贡献值根据PubChem数据库中上百万分子计算共性进行计算,复杂度则考虑分子中非标准结构特征的占比,例如大环、非标准环的合并、立体异构和分子量大小等方面。
研究员将40个化合物给化学家进行经验性评估其合成难易程度,并与SAscore得分进行比较发现与化学家给出的合成难易程度评分的相关性R2高达0.89,表明其在识别可合成难易程度上的可靠性较高。
代码:需要用到一个文件,在这里下载fpscores.pkl.gz,运行下面的脚本即可,主函数可以改成自己想要的分子SMILES
import math
import pickle
from rdkit import Chem
from rdkit.Chem import rdMolDescriptors
import os
import os.path as op
#get_sa_score start
_fscores = None
def readFragmentScores(name='fpscores'):
import gzip
global _fscores
# generate the full path filename:
if name == "fpscores":
name = op.join(os.getcwd(), name)
# name = op.join(op.dirname(__file__), name)
data = pickle.load(gzip.open('%s.pkl.gz' % name))
outDict = {}
for i in data:
for j in range(1, len(i)):
outDict[i[j]] = float(i[0])
_fscores = outDict
def numBridgeheadsAndSpiro(mol, ri=None):
nSpiro = rdMolDescriptors.CalcNumSpiroAtoms(mol)
nBridgehead = rdMolDescriptors.CalcNumBridgeheadAtoms(mol)
return nBridgehead, nSpiro
def calculateScore(m):
if _fscores is None:
readFragmentScores()
# fragment score
fp = rdMolDescriptors.GetMorganFingerprint(m,
2) # <- 2 is the *radius* of the circular fingerprint
fps = fp.GetNonzeroElements()
score1 = 0.
nf = 0
for bitId, v in fps.items():
nf += v
sfp = bitId
score1 += _fscores.get(sfp, -4) * v
score1 /= nf
# features score
nAtoms = m.GetNumAtoms()
nChiralCenters = len(Chem.FindMolChiralCenters(m, includeUnassigned=True))
ri = m.GetRingInfo()
nBridgeheads, nSpiro = numBridgeheadsAndSpiro(m, ri)
nMacrocycles = 0
for x in ri.AtomRings():
if len(x) > 8:
nMacrocycles += 1
sizePenalty = nAtoms**1.005 - nAtoms
stereoPenalty = math.log10(nChiralCenters + 1)
spiroPenalty = math.log10(nSpiro + 1)
bridgePenalty = math.log10(nBridgeheads + 1)
macrocyclePenalty = 0.
# ---------------------------------------
# This differs from the paper, which defines:
# macrocyclePenalty = math.log10(nMacrocycles+1)
# This form generates better results when 2 or more macrocycles are present
if nMacrocycles > 0:
macrocyclePenalty = math.log10(2)
score2 = 0. - sizePenalty - stereoPenalty - spiroPenalty - bridgePenalty - macrocyclePenalty
# correction for the fingerprint density
# not in the original publication, added in version 1.1
# to make highly symmetrical molecules easier to synthetise
score3 = 0.
if nAtoms > len(fps):
score3 = math.log(float(nAtoms) / len(fps)) * .5
sascore = score1 + score2 + score3
# need to transform "raw" value into scale between 1 and 10
min = -4.0
max = 2.5
sascore = 11. - (sascore - min + 1) / (max - min) * 9.
# smooth the 10-end
if sascore > 8.:
sascore = 8. + math.log(sascore + 1. - 9.)
if sascore > 10.:
sascore = 10.0
elif sascore < 1.:
sascore = 1.0
return sascore
def my_score(mols:list):
readFragmentScores("fpscores")
print('smiles\tsa_score')
for m in mols:
s = calculateScore(m)
smiles = Chem.MolToSmiles(m)
print(smiles + "\t" + "\t%3f" % s)
if __name__ == "__main__":
a = Chem.MolFromSmiles('CN(C)CCC=C1C2=CC=CC=C2CCC2=CC=CC=C12')
b = Chem.MolFromSmiles('[H][C@@]12CC3=CNC4=CC=CC(=C34)[C@@]1([H])C[C@H](CN2CC=C)C(=O)N(CCCN(C)C)C(=O)NCC')
c = Chem.MolFromSmiles('CCOC1=NC(NC(=O)CC2=CC(OC)=C(Br)C=C2OC)=CC(N)=C1C#N')
d = Chem.MolFromSmiles('OC(=O)C1=CC=CC=C1O')
x = [a,b,c,d]
sa_score=my_score(x)
# print(sa_score)