python绘图——地图

地图相关绘图——basemap

参考1

安装

已安装anaconda的情况,运行一下代码

conda install basemap

绘制地图

  1. 需导入的包
# 导入需要的包
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
  1. 绘制简单地图:定义地图中心的经纬度,地图形状等
# 初始化图形
plt.figure(figsize=(8, 8))

# 底图:圆形, lat_0:纬度;lon_o: 经度, (113,29)是武汉
m = Basemap(projection='ortho', resolution=None, lat_0=29, lon_0=113)
# 底色
m.bluemarble(scale=0.5)
# m.shadedrelief(scale=0.5)浮雕图像

plt.show()

python绘图——地图_第1张图片

  1. 标出某位置
# 以下三行是为了让matplot能显示中文
from pylab import mpl
mpl.rcParams['font.sans-serif'] = ['FangSong']
mpl.rcParams['axes.unicode_minus'] = False

fig = plt.figure(figsize=(8, 8))
# 注意几个新增的参数, width和height是用来控制放大尺度的
# 分别代表投影的宽度和高度(8E6代表 8x10^6米)
m = Basemap(projection='lcc', resolution=None,
            width=8E6, height=8E6,
            lat_0=23, lon_0=113,)
m.shadedrelief(scale=0.5)

# 这里的经纬度是:(经度, 纬度)
x, y = m(113, 23)
plt.plot(x, y, 'o', markersize=5) 
plt.text(x, y, '深圳', fontsize=36, color="black") 
plt.show()

python绘图——地图_第2张图片

  1. 世界地图——展开的经纬线的平面图
# 导入需要的包
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
from itertools import chain

def draw_map(m, scale=0.2):
    # 绘制带阴影的浮雕图像
    m.shadedrelief(scale=scale)

    # 根据经纬度切割,每13度一条线
    lats = m.drawparallels(np.linspace(-90, 90, 13))
    lons = m.drawmeridians(np.linspace(-180, 180, 13))

    # 集合所有线条
    lat_lines = chain(*(tup[1][0] for tup in lats.items()))
    lon_lines = chain(*(tup[1][0] for tup in lons.items()))
    all_lines = chain(lat_lines, lon_lines)

    # 循环画线
    for line in all_lines:
        line.set(linestyle='-', alpha=0.3, color='w')

fig = plt.figure(figsize=(8, 6), edgecolor='w')
m = Basemap(projection='cyl', resolution=None,
            llcrnrlat=-90, urcrnrlat=90,
            llcrnrlon=-180, urcrnrlon=180,)

draw_map(m)
plt.show()
  • 标出地方,在plt.show()前添加一下代码
def draw_point(m, x, y, name):
    # 这里的经纬度是:(经度, 纬度)
    x, y = m(x, y)
    plt.plot(x, y, 'ok', markersize=5)
    plt.text(x, y, name, fontsize=12, color="black")
locations = {
    '泰姬陵': (17, 78),
    '吉萨金字塔群': (29, 31),
    '英国的巨石阵': (51, 1),
    '巴黎圣母院': (48, 2),
    '卢浮宫': (48, 2),
    '红场和克里姆林': (55, 37),
    # ...
}
for loc in locations:
    print(locations[loc])
    draw_point(m, locations[loc][1], locations[loc][0], loc)

地图相关绘图——pyecharts-1.x

安装

下载链接

python绘图——地图_第3张图片
注意:pyechartsde 0.5.x与1.x.x 变动较大。这里下载的是最新版本,图片右上角绿色链接可下载旧版本。
版本变动说明

  • 两个版本写法举例
# 0.5.x版本

from pyecharts import Bar

attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [5, 20, 36, 10, 75, 90]
v2 = [10, 25, 8, 60, 20, 80]

bar = Bar("柱状图数据堆叠示例")
bar.add("商家A", attr, v1, is_stack=True)
bar.add("商家B", attr, v2, is_stack=True)
bar.render()
# 1.x.x版本

import pyecharts.options as opts
from pyecharts.charts import Bar

attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [5, 20, 36, 10, 75, 90]
v2 = [10, 25, 8, 60, 20, 80]

bar = (
    Bar()
    .add_xaxis(attr)
    .add_yaxis("商家A", v1, stack="stack1")
    .add_yaxis("商家B", v2, stack="stack1")
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(title_opts=opts.TitleOpts(title="柱状图数据堆叠示例"))
)
bar.render()

/
1.x.x用法说明参考
/

绘制地图

  1. 绘制简单地图
from pyecharts import options as opts
from pyecharts.charts import Map
import random

province = ['广东', '湖北', '湖南', '四川', '重庆', '黑龙江', '浙江', '山西', '河北', '安徽', '河南', '山东', '西藏']
data = [(i, random.randint(50, 150)) for i in province]

_map = (
        Map()
        .add("销售额", data, "china")
        .set_global_opts(
            title_opts=opts.TitleOpts(title="Map-基本示例"),
            legend_opts=opts.LegendOpts(is_show=False),
            visualmap_opts=opts.VisualMapOpts(max_=200, is_piecewise=True),
        )
    )

_map.render_notebook()

python绘图——地图_第4张图片

你可能感兴趣的:(绘图,python)