open-mmlab labelImg mmdetection

open-mmlab的检测项目

  • 数据标柱工具介绍
    • labelImg
      • 安装(两种方法都适用于linux和mac上的conda虚拟环境下安装)
        • pip包安装
        • 从源码安装
    • labelme
      • 安装
      • 使用
      • 生成label数据
  • mmdetection
    • 配置环境
    • 运行
    • 用自己的数据集微调
      • 下载预训练模型
      • voc数据修改为标准的coco格式
      • 新建数据类文件
      • 配置文件修改
      • 训练
      • 测试
  • mmsegmentation

数据标柱工具介绍

labelImg

git地址: https://github.com/tzutalin/labelImg

安装(两种方法都适用于linux和mac上的conda虚拟环境下安装)

根据git上介绍,有两种安装方法:

pip包安装

pip包安装(linux上最简单的安装方法),安装命令及使用命令如下:

# 环境准备
conda create -n labelImg_1 python=3.7
conda activate labelImg_1
# linux安装
pip3 install labelImg
# linux使用vnc打开可视化界面。命令行输入如下:
labelImg
#
labelImg [IMAGE_PATH] [PRE-DEFINED CLASS FILE]

使用pip list查看安装包

pip list
Package    Version
---------- ---------
certifi    2021.10.8
labelImg   1.8.6
lxml       4.6.3
pip        21.0.1
PyQt5      5.15.5
PyQt5-Qt5  5.15.2
PyQt5-sip  12.9.0
setuptools 58.0.4
wheel      0.37.0

软件截图如下
open-mmlab labelImg mmdetection_第1张图片

从源码安装

下载源代码,准备虚拟环境

# 环境准备
conda create -n labelImg_2 python==3.7
conda activate labelImg_2
pip install PyQt5
pip install lxml
pyrcc5 -o libs/resources.py resources.qrc
# 下载
git clone https://github.com/tzutalin/labelImg
cd labelImg
# 使用
python3 labelImg.py
#
python3 labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]

使用pip list查看安装包

pip list
Package    Version
---------- ---------
certifi    2021.10.8
lxml       4.6.3
pip        21.2.2
PyQt5      5.15.5
PyQt5-Qt5  5.15.2
PyQt5-sip  12.9.0
setuptools 58.0.4
wheel      0.37.0

软件截图如下
open-mmlab labelImg mmdetection_第2张图片

labelme

git地址: https://github.com/wkentaro/labelme

安装

安装命令如下:

conda create --name=labelme python=3.6
source activate labelme
pip install labelme

使用

直接在环境下键入

labelme

出现界面如下,此时可以打开图片路径进行标注:
open-mmlab labelImg mmdetection_第3张图片
点击Create Polygons进行标注,输入标签


点击左侧菜单栏保存,保存为json文件。

生成label数据

# 运用命令
labelme_json_to_dataset DJI_20210414132518_0423_Z.json

生成文件夹DJI_20210414132518_0423_Z_json,内容如下:
open-mmlab labelImg mmdetection_第4张图片

注:可以把多个labelme_json_to_dataset aa.json写入批处理文件中

mmdetection

git地址: https://github.com/open-mmlab/mmdetection

git clone https://github.com/open-mmlab/mmdetection

下载到服务器,更新到本地,用pycharm编辑器打开(参考https://blog.csdn.net/fighting_Kitty/article/details/121023315)

配置环境

找到readme中Installation,get_started.md中详细写了环境安装,主要命令如下:

# 创建虚拟环境
conda create -n openmmlab python=3.7 -y
conda activate openmmlab
# 安装PyTorch and torchvision
#(按照自己的cuda版本(nvcc -V)
# 去pytorch官网上选https://pytorch.org/get-started/previous-versions/)
# CUDA 11.0
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
# Install MMDetection(自动或者手动,自动简单,手动适合调试研究代码)
pip install openmim
mim install mmdet

# 手动
pip install torch==1.7.0+cu110 torchvision==0.8.1+cu110 torchaudio==0.7.0  -f https://download.pytorch.org/whl/torch_stable.html
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu110/1.7.1+cu110/index.htm



附:cuda查看nvcc -V

nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Thu_Jun_11_22:26:38_PDT_2020
Cuda compilation tools, release 11.0, V11.0.194
Build cuda_11.0_bu.TC445_37.28540450_0

运行

mkdir checkpoints
cd checkpoints
wget https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth
wget https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py

代码

from mmdet.apis import init_detector, inference_detector

config_file = '../configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
# download the checkpoint from model zoo and put it in `checkpoints/`
# url: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth
checkpoint_file = '../checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'
device = 'cuda:0'
# init a detector
model = init_detector(config_file, checkpoint_file, device=device)
# inference the demo image
inference_detector(model, '../demo/demo.jpg')

用自己的数据集微调

下载预训练模型

mmdetection里提供了丰富的预训练权重模型,本文使用faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth,下载后放到checkpoints路径下

voc数据修改为标准的coco格式

用labelImg标注检测图片,标注数据格式为PASCAL VOC的格式,一个图片对应一个XML注文件。COCO数据格式,所有的图像数据标注信息都保存在一个JSON文件中。转换代码如下:

import json
import os, sys
import xml.etree.ElementTree as ET
import pdb;pdb.set_trace()
mode = 'test' # 这里可以改成train、val
DATA_DIR = '/home/qian/caojie/software/mmdetection/data/hotel/' + mode + '/'
ANN_DIR = DATA_DIR + 'annotations/'

# ==================== 需要修改 train or val ========================
COCO_JSON_FILE = DATA_DIR + 'hotel_' + mode + '.json'  # json save path
VOC_XMLS_DIR = DATA_DIR + 'annotations/'
# ==================================================================

if not os.path.exists(ANN_DIR):
    os.makedirs(ANN_DIR)

# coco images 的列表
images = []

# coco annotations 的列表
annotations = []

# coco categories 的列表
# If necessary, pre-define category and its id
PRE_DEFINE_CATEGORIES = {"background": 0, "bed": 1, "chair": 2, "curtain": 3}
categories = [
    {
        'id': 0,
        'name': 'background',
        'supercategory': 'object',
    },
    {
        'id': 1,
        'name': 'bed',
        'supercategory': 'object',
    },
    {
        'id': 2,
        'name': 'chair',
        'supercategory': 'object',
    },
    {
        'id': 3,
        'name': 'curtain',
        'supercategory': 'object',
    }
]

# coco 存储格式的字典
coco_json = {
    "images": images,
    "annotations": annotations,
    "categories": categories
}

'''
purpose: voc 的xml 转 coco 的json
'''


def labelImg_voc2coco():
    import pdb;pdb.set_trace()
    voc_xmls_list = os.listdir(VOC_XMLS_DIR)
    converted_num = 0
    image_id = 0
    bbox_id = 0

    for xml_fileName in voc_xmls_list:

        # 进度输出
        converted_num += 1
        sys.stdout.write('\r>> Processing %s, Converting xml %d/%d' % (xml_fileName, converted_num, len(voc_xmls_list)))
        sys.stdout.flush()

        # 解析xml
        xml_fullName = os.path.join(VOC_XMLS_DIR, xml_fileName)
        tree = ET.parse(xml_fullName)  # 解析xml元素树
        root = tree.getroot()  # 获得树的根节点

        # image: file_name
        filename = get_element(root, 'filename').text.split('.')[0] + '.jpg'  # 读xml文件里的文件名
        # filename = xml_fileName                                                 # 读文件名

        # image: id
        image_id = image_id + 1

        # image: width & height
        size = get_element(root, 'size')
        img_width = int(get_element(size, 'width').text)
        img_height = int(get_element(size, 'height').text)

        # images
        image = {
            'file_name': filename,
            'id': image_id,
            'width': img_width,
            'height': img_height
        }

        coco_json['images'].append(image)

        for obj in get_elements(root, 'object'):
            # annotation: category_id
            category = get_element(obj, 'name').text
            if category not in PRE_DEFINE_CATEGORIES:
                new_id = len(PRE_DEFINE_CATEGORIES) + 1
                PRE_DEFINE_CATEGORIES[category] = new_id
            category_id = PRE_DEFINE_CATEGORIES[category]

            # annotation: id
            bbox_id += 1

            # annotation: bbox
            bndbox = get_element(obj, 'bndbox')
            xmin = int(get_element(bndbox, 'xmin').text)
            ymin = int(get_element(bndbox, 'ymin').text)
            xmax = int(get_element(bndbox, 'xmax').text)
            ymax = int(get_element(bndbox, 'ymax').text)
            assert (xmax > xmin)
            assert (ymax > ymin)
            bbox_width = abs(xmax - xmin)
            bbox_height = abs(ymax - ymin)

            # annotation: segmentation
            # seg = list(eval(get_element(obj, 'segmentation').text))

            annotation = {
                'id': bbox_id,
                'image_id': image_id,
                'category_id': category_id,
                # 'segmentation': [seg],
                'area': bbox_width * bbox_height,
                'bbox': [xmin, ymin, bbox_width, bbox_height],
                'iscrowd': 0
            }

            coco_json['annotations'].append(annotation)

    print('\r')
    print("Num of categories: %s" % len(categories))
    print("Num of images: %s" % len(images))
    print("Num of annotations: %s" % len(annotations))
    print(PRE_DEFINE_CATEGORIES)
    # coco格式字典写入json
    with open(COCO_JSON_FILE, 'w') as outfile:
        outfile.write(json.dumps(coco_json))


'''
input:
    @root: 根节点  
    @childElementName: 字节点tag名称
output:
    @elements:根节点下所有符合的子元素对象    
'''


def get_elements(root, childElementName):
    elements = root.findall(childElementName)
    return elements


'''
input:
    @root: 根节点  
    @childElementName: 字节点tag名称
output:
    @elements:根节点下第一个符合的子元素对象    
'''


def get_element(root, childElementName):
    element = root.find(childElementName)
    return element


if __name__ == '__main__':
    print('start convert')
    labelImg_voc2coco()
    print('\nconvert finished!')

最终标注数据文件夹如下:
open-mmlab labelImg mmdetection_第5张图片

新建数据类文件

新建数据类文件mmdet/datasets/hotel.py,内容如下:

import itertools
import logging
import os.path as osp
import tempfile
import warnings
from collections import OrderedDict

import mmcv
import numpy as np
from mmcv.utils import print_log
from terminaltables import AsciiTable

from mmdet.core import eval_recalls
from .api_wrappers import COCO, COCOeval
from .builder import DATASETS
from .custom import CustomDataset
from .coco import CocoDataset  # 导入coco数据集类

@DATASETS.register_module()
class HotelDataset(CocoDataset):  # 这里继承coco数据集类

    CLASSES = ('background', 'bed', 'chair', 'curtain')

    def load_annotations(self, ann_file):
        """Load annotation from COCO style annotation file.

        Args:
            ann_file (str): Path of annotation file.

        Returns:
            list[dict]: Annotation info from COCO api.
        """
        self.coco = COCO(ann_file)
        # The order of returned `cat_ids` will not
        # change with the order of the CLASSES
        self.cat_ids = self.coco.get_cat_ids(cat_names=self.CLASSES)

        self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)}
        self.img_ids = self.coco.get_img_ids()
        data_infos = []
        total_ann_ids = []
        for i in self.img_ids:
            info = self.coco.load_imgs([i])[0]
            info['filename'] = info['file_name']
            data_infos.append(info)
            ann_ids = self.coco.get_ann_ids(img_ids=[i])
            total_ann_ids.extend(ann_ids)
        assert len(set(total_ann_ids)) == len(
            total_ann_ids), f"Annotation ids in '{ann_file}' are not unique!"
        return data_infos

记得在mmdet/datasets/init.py文件中,加入自己的数据集名字

# Copyright (c) OpenMMLab. All rights reserved.
from .builder import DATASETS, PIPELINES, build_dataloader, build_dataset
from .cityscapes import CityscapesDataset
from .coco import CocoDataset
from .coco_panoptic import CocoPanopticDataset
from .custom import CustomDataset
from .dataset_wrappers import (ClassBalancedDataset, ConcatDataset,
                               MultiImageMixDataset, RepeatDataset)
from .deepfashion import DeepFashionDataset
from .lvis import LVISDataset, LVISV1Dataset, LVISV05Dataset
from .samplers import DistributedGroupSampler, DistributedSampler, GroupSampler
from .utils import (NumClassCheckHook, get_loading_pipeline,
                    replace_ImageToTensor)
from .voc import VOCDataset
from .wider_face import WIDERFaceDataset
from .xml_style import XMLDataset
from .hotel import HotelDataset  # 这里导入自己的数据类文件

__all__ = [
    'CustomDataset', 'XMLDataset', 'CocoDataset', 'DeepFashionDataset',
    'VOCDataset', 'CityscapesDataset', 'LVISDataset', 'LVISV05Dataset',
    'LVISV1Dataset', 'GroupSampler', 'DistributedGroupSampler',
    'DistributedSampler', 'build_dataloader', 'ConcatDataset', 'RepeatDataset',
    'ClassBalancedDataset', 'WIDERFaceDataset', 'DATASETS', 'PIPELINES',
    'build_dataset', 'replace_ImageToTensor', 'get_loading_pipeline',
    'NumClassCheckHook', 'CocoPanopticDataset', 'MultiImageMixDataset',
    'HotelDataset'  # 这里加上自己的数据集
]

由于要注册一下,所以,要重新从源码安装mmdet。后面有解释。

配置文件修改

新建自己的配置文件,路径为:configs/caojie_configs/config.py。依照如faster_rcnn_r50_fpn_1x_coco.py配置文件中的内容,把这4个文件有关model、dataset、schedule、default_runtime的内容,都复制到自己的配置文件中。

_base_ = [
    '../_base_/models/faster_rcnn_r50_fpn.py',
    '../_base_/datasets/coco_detection.py',
    '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]

最后自己的配置文件如下:

# model settings
model = dict(
    type='FasterRCNN',
    backbone=dict(
        type='ResNet',
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=1,
        norm_cfg=dict(type='BN', requires_grad=True),
        norm_eval=True,
        style='pytorch',
        init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
    neck=dict(
        type='FPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        num_outs=5),
    rpn_head=dict(
        type='RPNHead',
        in_channels=256,
        feat_channels=256,
        anchor_generator=dict(
            type='AnchorGenerator',
            scales=[8],
            ratios=[0.5, 1.0, 2.0],
            strides=[4, 8, 16, 32, 64]),
        bbox_coder=dict(
            type='DeltaXYWHBBoxCoder',
            target_means=[.0, .0, .0, .0],
            target_stds=[1.0, 1.0, 1.0, 1.0]),
        loss_cls=dict(
            type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
        loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
    roi_head=dict(
        type='StandardRoIHead',
        bbox_roi_extractor=dict(
            type='SingleRoIExtractor',
            roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
            out_channels=256,
            featmap_strides=[4, 8, 16, 32]),
        bbox_head=dict(
            type='Shared2FCBBoxHead',
            in_channels=256,
            fc_out_channels=1024,
            roi_feat_size=7,
            num_classes=4,  # 微调时 改成 类别数+1
            bbox_coder=dict(
                type='DeltaXYWHBBoxCoder',
                target_means=[0., 0., 0., 0.],
                target_stds=[0.1, 0.1, 0.2, 0.2]),
            reg_class_agnostic=False,
            loss_cls=dict(
                type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
            loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
    # model training and testing settings
    train_cfg=dict(
        rpn=dict(
            assigner=dict(
                type='MaxIoUAssigner',
                pos_iou_thr=0.7,
                neg_iou_thr=0.3,
                min_pos_iou=0.3,
                match_low_quality=True,
                ignore_iof_thr=-1),
            sampler=dict(
                type='RandomSampler',
                num=256,
                pos_fraction=0.5,
                neg_pos_ub=-1,
                add_gt_as_proposals=False),
            allowed_border=-1,
            pos_weight=-1,
            debug=False),
        rpn_proposal=dict(
            nms_pre=2000,
            max_per_img=1000,
            nms=dict(type='nms', iou_threshold=0.7),
            min_bbox_size=0),
        rcnn=dict(
            assigner=dict(
                type='MaxIoUAssigner',
                pos_iou_thr=0.5,
                neg_iou_thr=0.5,
                min_pos_iou=0.5,
                match_low_quality=False,
                ignore_iof_thr=-1),
            sampler=dict(
                type='RandomSampler',
                num=512,
                pos_fraction=0.25,
                neg_pos_ub=-1,
                add_gt_as_proposals=True),
            pos_weight=-1,
            debug=False)),
    test_cfg=dict(
        rpn=dict(
            nms_pre=1000,
            max_per_img=1000,
            nms=dict(type='nms', iou_threshold=0.7),
            min_bbox_size=0),
        rcnn=dict(
            score_thr=0.05,
            nms=dict(type='nms', iou_threshold=0.5),
            max_per_img=100)
        # soft-nms is also supported for rcnn testing
        # e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05)
    ))


# dataset settings
dataset_type = 'HotelDataset'  # 这里改为自己的数据集类名 仿照mmdet/datasets/coco.py文件
data_root = '/home/qian/caojie/software/mmdetection/data/hotel/'   # 这里修改自己的数据目录
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(1333, 800),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='Pad', size_divisor=32),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ])
]
data = dict(
    samples_per_gpu=2,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        ann_file=data_root + 'train/hotel_train.json',   #  这里修改自己的训练集数据
        img_prefix=data_root + 'train/images/',  #  这里修改自己的训练集数据
        pipeline=train_pipeline),
    val=dict(
        type=dataset_type,
        ann_file=data_root + 'val/hotel_val.json',  #  这里修改自己的验证集数据
        img_prefix=data_root + 'val/images/',  #  这里修改自己的验证集数据
        pipeline=test_pipeline),
    test=dict(
        type=dataset_type,
        ann_file=data_root + 'test/hotel_test.json',  #  这里修改自己的测试集数据
        img_prefix=data_root + 'test/images/',  #  这里修改自己的测试集数据
        pipeline=test_pipeline))
evaluation = dict(interval=1, metric='bbox')


# optimizer
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)  # 微调时学习率设小点
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
    policy='step',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=0.001,
    step=[8, 11])
runner = dict(type='EpochBasedRunner', max_epochs=8)  # 微调时epochs设小点


checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
    interval=50,
    hooks=[
        dict(type='TextLoggerHook'),
        # dict(type='TensorboardLoggerHook')
    ])
# yapf:enable
custom_hooks = [dict(type='NumClassCheckHook')]

dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = 'checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'  # 微调时,改成预训练模型路径
resume_from = None
workflow = [('train', 1)]


训练

运行命令如下:

python tools/train.py configs/caojie_configs/config.py

报错

Traceback (most recent call last):
  File "train.py", line 16, in <module>
    from mmdet.apis import init_random_seed, set_random_seed, train_detector
ImportError: cannot import name 'init_random_seed' from 'mmdet.apis' (/home/qian/anaconda3/envs/openmmlab/lib/python3.7/site-packages/mmdet/apis/__init__.py)

改了好几个项目代码,结果突然醒悟,这是pip install mmdet包中的错误啊,于是找到环境目录下一看,果然是缺少init_random_seed,包括同级目录下train.py里的init_random_seed函数实现。可是也不能对环境下安装的pip包改来改去啊。所以我又从源码安装的mmdet,命令如下:

cd mmdetection  # 当前自己的项目路径
pip install -r requirements/build.txt
pip install -v -e .  # or "python setup.py develop"

训练完成之后,生成work_dirs,模型保存到这里面

测试

测试及可视化运行命令如下:

python tools/test.py configs/caojie_configs/config.py work_dirs/config/latest.pth --eval bbox
# 保存可视化检测图片,再加以下参数
--show --show-dir cj_code/

mmsegmentation

git地址: https://github.com/open-mmlab/mmsegmentation

git clone https://github.com/open-mmlab/mmsegmentation

你可能感兴趣的:(python,cuda,pytorch,python,开发语言,后端)