yolov5区分训练集验证集测试集

import os
import shutil
import random
 
# 保证随机可复现
random.seed(0)
 
# def mk_dir(file_path):
#     if os.path.exists(file_path):
#         # 如果文件夹存在,则先删除原文件夹在重新创建
#         shutil.rmtree(file_path)
#     os.makedirs(file_path)
 
def split_data(file_path,new_file_path,train_rate,val_rate,test_rate):
    # yolov5训练自己数据集时 准备了images图片文件夹和txt标签文件夹;但是
    # 需要分割训练集、验证集、测试集3个文件夹,每个文件夹有images和labels
    # 2个文件夹;此方法可以把imags和labels总文件夹,分割成3个文件夹;
    # file_path ='images 文件夹'
    # xmlpath= 'txt文件夹'
    # new_file_path='保存的新地址'
    
    eachclass_image = []
    for image in os.listdir(file_path):
        eachclass_image.append(image)
    total = len(eachclass_image)
    random.shuffle(eachclass_image)
    train_images = eachclass_image[0:int(train_rate*total)] #注意左闭右开
    val_images = eachclass_image[int(train_rate*total):int((train_rate+val_rate)*total)] #注意左闭右开
    test_images = eachclass_image[int((train_rate+val_rate)*total):]

    for image in train_images:
        print(image)
        old_path = file_path+'/'+image
        new_path1 = new_file_path+'/'+'train'+'/'+'images'
        if not os.path.exists(new_path1):
            os.makedirs(new_path1)
        new_path = new_path1 +'/'+image
        # print(new_path)
        shutil.copy(old_path,new_path)
    new_name = os.listdir(new_file_path+'/'+'train'+'/'+'images')
    # print(new_name[1][:-4])
    for im in new_name:
        old_xmlpath=xmlpath+'/'+im[:-3]+'txt'
        new_xmlpath1=new_file_path+'/'+'train'+'/'+'labels'
        if not os.path.exists(new_xmlpath1):
            os.makedirs(new_xmlpath1)
        new_xmlpath=new_xmlpath1+'/'+im[:-3]+'txt'
        shutil.copy(old_xmlpath,new_xmlpath)


    for image in val_images:
        old_path = file_path+'/'+image
        new_path1 = new_file_path+'/'+'val'+'/'+'images'
        if not os.path.exists(new_path1):
            os.makedirs(new_path1)
        new_path = new_path1+'/'+image
        shutil.copy(old_path,new_path)
    new_name = os.listdir(new_file_path+'/'+'val'+'/'+'images')
    for im in new_name:
        old_xmlpath=xmlpath+'/'+im[:-3]+'txt'
        new_xmlpath1=new_file_path+'/'+'val'+'/'+'labels'
        if not os.path.exists(new_xmlpath1):
            os.makedirs(new_xmlpath1)
        new_xmlpath=new_xmlpath1+'/'+im[:-3]+'txt'
        shutil.copy(old_xmlpath,new_xmlpath)

    for image in test_images:
        old_path = file_path+'/'+image
        new_path1 = new_file_path+'/'+'test'+'/'+'images'
        if not os.path.exists(new_path1):
            os.makedirs(new_path1)
        new_path = new_path1+'/'+image
        shutil.copy(old_path,new_path)
    new_name = os.listdir(new_file_path+'/'+'test'+'/'+'images')
    for im in new_name:
        old_xmlpath=xmlpath+'/'+im[:-3]+'txt'
        new_xmlpath1=new_file_path+'/'+'test'+'/'+'labels'
        if not os.path.exists(new_xmlpath1):
            os.makedirs(new_xmlpath1)
        new_xmlpath=new_xmlpath1+'/'+im[:-3]+'txt'
        shutil.copy(old_xmlpath,new_xmlpath)

if __name__ == '__main__':
    file_path = "U:\\datas\\jyz11class_dev\\b\\images"
    xmlpath= 'U:\\datas\\jyz11class_dev\\labels'
    new_file_path = "U:\\datas\\jyz11class_dev\\c"
    split_data(file_path,new_file_path,train_rate=0.7,val_rate=0.2,test_rate=0.1)
 
 
 

你可能感兴趣的:(深度学习,python,目标检测,深度学习目标检测)