- 高效沟通的原则与方法论(分歧处理的实践)
口子窖
高效沟通的原则与方法论(分歧处理的实践)原则认识根源首先要认清分歧产生的根源,绝不能片面化。一些常见的案例:1、领导:这个页面没有突出重点,指标换个颜色会不会好点2、A同事:这个研发规范是谁制定出来的,增加了我好多工作量,而且根本没有可执行性对于1,通常情况下大家就采用哪种颜色展开了讨论,决定之后,沟通过程结束。对于2,不出意外A同事起个头,BCD同事相继抱怨,负能量传遍整个团队。但是,对于1,问
- YOLOv13_SSOD:基于超图关联增强的半监督目标检测框架(原创创新算法)
YOLOv13_SSOD:基于超图关联增强的半监督目标检测框架项目背景随着深度学习技术的快速发展,目标检测在各个领域都取得了显著的进展。然而,现有的监督学习方法在实际应用中面临着标注数据稀缺、泛化能力不足等挑战。特别是在火灾烟雾检测、工业质检等特定场景中,获取大量高质量标注数据的成本极高。为了解决这一问题,本项目基于最新发布的YOLOv13架构,结合EfficientTeacher半监督学习框架,
- USB串口通信、握手协议、深度学习等技术要点
深度学习教程,
深度学习人工智能网络协议
基于OpenMV的智能车牌识别系统:从硬件到算法的完整实现前言本文将详细介绍一个基于OpenMV微控制器的智能车牌识别系统的设计与实现。该系统集成了嵌入式视觉处理、串口通信协议、深度学习OCR识别等多种技术,实现了从图像采集到车牌识别的完整流程。系统架构概述整体设计思路该车牌识别系统采用分布式架构设计,将计算密集型任务与嵌入式控制分离:┌─────────────┐USB串口通信┌────────
- 语音识别开源项目推荐:GitHub热门仓库盘点
AGI大模型与大数据研究院
AI大模型应用开发实战语音识别开源githubai
2024年必看!GitHub热门语音识别开源项目全解析:从入门到实战关键词语音识别(ASR)、开源项目、GitHub、Whisper、FunASR、PaddleSpeech、深度学习摘要想象一下:开车时只需说一句话就能自动发消息,听英文演讲时实时获得中文翻译,给视障人士读文本时精准转换——这些场景的背后,语音识别(AutomaticSpeechRecognition,ASR)技术正在改变我们与机器
- IPSAN 共享存储详解:架构、优化与落地实践指南
Sally璐璐
运维php开发语言
一、IPSAN技术定位与核心价值核心价值对比矩阵:维度IPSANFC-SAN实现方案成本端口成本$500端口成本$2000复用IP网络设备传输距离跨地域(VPN/专线)≤10公里两地三中心架构运维效率SNMP/CLI管理Zone/ALPA管理自动化运维工具链协议标准IETFRFC3720专有光纤协议全平台兼容性能指标100GbE(12GB/s)32GFC(3.5GB/s)NVMe/TCP+DPU加
- 281129-李晏林-2022/12/6【day56】
尘心_aa8c
学《于敏洪案例》第五天今天听民于敏洪案例,学了今天感觉有点疲惫,在听课过程中最大的促动还是在于每天及时送自己鼓励,这件事情,有再做没做好,也没做好精准的数据统计,不养成习惯,对于自己来说会成很大问题,可能这个学这个课程一结束,没过多久这方法就被自己忘于脑后。先给自己制定确实可量化的指标,刚开始,先给自己送20个鼓励,每完成5个做次记录。鼓励分为明的鼓励,与自我暗示。学习于敏洪案例的本质是什么?从于
- Python训练 + Go优化 + C#部署:端到端AI模型的跨语言实践
威哥说编程
人工智能学习资料库pythongolangc#
在现代AI应用中,如何高效地训练、优化、并最终部署AI模型是一项复杂且具有挑战性的任务。在这一过程中,选择合适的编程语言和工具可以显著提高效率和系统的性能。Python作为AI领域的主流语言,具有丰富的深度学习框架(如PyTorch和TensorFlow),在模型训练方面处于领先地位。然而,针对计算密集型任务(如数据预处理、加密等),Go语言因其高效的并发处理和出色的性能,成为优化计算的理想选择。
- DL00478-涡轮叶片缺陷检测数据集yolo格式1300张左右
涡轮叶片缺陷检测数据集yolo格式1300张左右涡轮叶片缺陷检测数据集YOLO格式解析:提升研究与论文写作的关键要点在研究涡轮叶片缺陷检测的过程中,数据集的选择和格式处理是一个至关重要的环节。特别是当你打算通过卷积神经网络(CNN)等深度学习模型进行缺陷检测时,数据集的标注和格式化直接影响到模型的训练效果和论文的质量。本文将重点探讨涡轮叶片缺陷检测数据集的YOLO格式,并分析如何利用这一格式为研究
- Python数据读写与组织全解析(查缺补漏篇)
Monkey的自我迭代
python学习的查缺补漏机器学习人工智能python
1高维数据由键值对类型的数据构成,可以多层嵌套。高维数据相比一维和二维数据能表达更加灵活和复杂的数据关系,可以用字典类型表示。一维数据不用字典类型来表示。2read、readline、redlines和for循环输出读取的区别直接read,读取的结果就是一个字符串,和文件中一模一样f_2=open('cpi.csv','r')print(f_2.read())指标,2015,2016,2017,居
- 今天是个好日子
走到底的花姑娘
大学闺蜜下午四点多发信息说她的儿砸提早来报道了。中午快十二点时本想发信息问她最近怎么样了,又考虑到这时间点她可能在吃饭,等下午迟点再联系她。因为她跟我当时怀孕一样有妊娠糖尿病,想了解一下她最近控糖效果如何。结果,我还没来得及问,她就直接告诉我生了,提早了一个月。好在小孩各项指标都比较正常,体重4.3斤,毕竟是早产儿为了保险起见得在保温箱中观察几天。真庆幸母子健康,真替她开心。他们夫妻俩年纪相对也比
- 幼小衔接
像话读书爻
角色转换1.认识校园;2.认识教室;3.认识教师、同学;做好评估1.作息;2.注意力;3.交往;健康心态1.接受;2.向上;3.向善;
- Epoch
老兵发新帖
人工智能
在深度学习和机器学习中,Epoch(轮次或周期)是一个核心训练概念,指模型在整个训练数据集上完成一次完整遍历的过程。以下是关于Epoch的详细解析:一、核心定义基本含义Epoch表示模型将所有训练数据完整学习一次的过程。例如:若训练集有10,000个样本,则1个Epoch即模型用这10,000个样本训练一轮。与相关概念的关系Batch(批次):数据集被分割成的小组(如每批32个样本)。Iterat
- 深度学习图像分类数据集—百种病虫害分类
AI街潜水的八角
深度学习图像数据集深度学习分类人工智能
该数据集为图像分类数据集,适用于ResNet、VGG等卷积神经网络,SENet、CBAM等注意力机制相关算法,VisionTransformer等Transformer相关算法。数据集信息介绍:百种病虫害识别分类,训练集45095张,验证集7508张,测试集22619张具体类别为以下:insect_classes=["rice_leaf_roller","rice_leaf_caterpillar
- 基于 Python 的网站信息探测工具设计与实现
计算机毕业设计指导
python网络服务器
基于Python的网站信息探测工具设计与实现摘要在渗透测试与网络安全评估中,信息探测是最基础且关键的一步。通过对目标网站的操作系统、服务器、CMS、端口、目录结构等信息进行自动化探测,可为后续攻击路径识别提供基础数据支撑。传统工具如WhatWeb、FOFA等虽功能强大,但在定制化与扩展性方面受限。本文设计并实现了一款基于Python的轻量级网站信息探测工具,支持URL/IP扫描、开放端口探测、CM
- 车辆云端威胁情报共享系统的多维解析与发展路径
百态老人
大数据人工智能
第一部分:内容本质提取原始内容描述了一个闭环网络安全体系:“车辆实时上传异常行为日志至安全运营中心(VSOC),云端通过机器学习分析攻击模式并下发全局防御策略”。其核心架构包含:数据采集层:车辆端持续收集异常行为日志数据,包含CAN总线通信模式、网络流量特征及驾驶行为数据传输层:通过V2X通信协议和OTA更新通道实现车云双向通信分析层:安全运营中心(VSOC)采用CNN-BiSRU等深度学习模型进
- 基于深度学习的语音识别:从音频信号到文本转录
Blossom.118
机器学习与人工智能深度学习语音识别音视频人工智能机器学习线性代数计算机视觉
前言语音识别(AutomaticSpeechRecognition,ASR)是人工智能领域中一个极具挑战性和应用前景的研究方向。它通过将语音信号转换为文本,为人们提供了更加自然和便捷的人机交互方式。近年来,深度学习技术在语音识别领域取得了显著进展,极大地提高了语音识别的准确率和鲁棒性。本文将详细介绍如何使用深度学习技术构建一个语音识别系统,从音频信号的预处理到模型的训练与部署。一、语音识别的基本概
- 专属私有云满足密评要求啥意思?密评是什么?为什么专有云需要进行密评?到底那些系统需要密评?
文章永久免费只为良心
数据库
“专属私有云满足密评要求”指该私有云平台的设计、技术实现及运维管理,全面符合国家《信息安全技术信息系统密码应用基本要求》(GB/T39786-2021)等法规的密码安全标准,通过权威机构评测(如等保三级、密评三级),确保数据全链路安全可控。以下是具体解析:一、密评的核心要求与专属私有云的适配性密评(商用密码应用安全性评估)是国家密码管理局对信息系统密码应用合规性的强制性检测,重点评估以下方面:密码
- 达梦数据库监控观测最佳实践
概述达梦企业管理器简称DEM,架构如下:概略来说,每个数据库主机安装代理程序DMAgent,在监控方面,它将指标发送至DEM服务端,用户可访问DEM控制台查看数据主机和实例的监控指标,在DEM进行配置后可通过http://:8080/dem/metrics端点暴露主机和数据库的Prometheus指标,观测云DataKit可从此端点采集指标完成达梦数据库集成。前提条件监控目标可通过DMAgent上
- 数字人系统:AI界的超级巨星,你准备好了吗?
优秘智能UMI
数字人人工智能深度学习计算机视觉机器学习自然语言处理语言模型图像处理
在这个日新月异的科技时代,每一个创新的火花都可能点燃一场变革的燎原之火。今天,我们要聊的,正是那颗在AI领域熠熠生辉的璀璨新星——优秘数字人系统。它不仅仅是技术的飞跃,更是对未来生活方式的深刻重塑,一场关于人机交互、智能共生的美好预演。技术原理:深度解析与智能构建的奥秘1.深度学习:智能的基石数字人系统的核心技术之一在于深度学习。深度学习是一种模仿人脑神经网络结构和功能的机器学习技术,通过构建多层
- “专属私有云”或“行业公有云(逻辑隔离的公共云专区)”两种主流部署模式到底有什么区别?政务云不就应该是专属的私有云么?政务云是不是不能混用?
一、安全合规性要求分层,驱动部署模式分化核心敏感系统需物理隔离(专属私有云)涉及公民隐私、国家安全(如公安、财政、医保核心数据库)的系统,必须通过物理隔离的专属私有云保障绝对控制权。例如:浦东新区公安局的涉密数据采用自建私有云,确保数据完全自主管控3。某省地市政务云要求核心业务部署在信创私有云,满足等保三级和国密算法评估要求5。非敏感公共服务适用逻辑隔离(行业公有云)面向公众的服务(如社保查询、线
- 聚焦基础研究突破,北电数智联合复旦大学等团队提出“AI安全”DDPA方法入选ICML
CSDN资讯
人工智能安全数据要素大数据
近日,由北电数智首席科学家窦德景教授牵头,联合复旦大学和美国奥本大学等科研团队共同研发,提出一种DDPA(DynamicDelayedPoisoningAttack)新型对抗性攻击方法,为机器学习领域的安全研究提供新视角与工具,相关论文已被国际机器学习大会(ICML2025)收录。ICML由国际机器学习学会(IMLS)主办,聚焦深度学习、强化学习、自然语言处理等机器学习前沿方向,是机器学习与人工智
- 商汤科技视觉算法面试30问全景精解
商汤科技视觉算法面试30问全景精解——AI赋能×智能视觉×产业创新:商汤科技视觉算法面试核心考点全览前言商汤科技(SenseTime)作为全球领先的人工智能平台公司,专注于计算机视觉、深度学习和智慧城市、智能汽车、智能医疗等领域,推动人脸识别、目标检测、视频分析、自动驾驶等前沿技术的产业化落地。商汤视觉算法岗位面试不仅考察候选人对视觉基础理论的扎实掌握,更关注其在大规模安防、自动驾驶、智慧医疗等复
- 旷视科技视觉算法面试30问全景精解
机 _ 长
科技算法面试深度学习YOLO
旷视科技视觉算法面试30问全景精解——AI赋能×智能安防×视觉创新:旷视科技视觉算法面试核心考点全览前言旷视科技(Megvii)作为全球领先的人工智能公司,专注于计算机视觉、深度学习和智能安防等领域,推动人脸识别、目标检测、视频分析、工业视觉等前沿技术的产业化落地。旷视视觉算法岗位面试不仅考察候选人对视觉基础理论的扎实掌握,更关注其在大规模安防、工业检测、智慧城市等复杂场景下的创新与工程能力。本文
- 红色小象母婴品牌怎么样?母婴品牌哪个好?在哪可领取母婴商品优惠劵?
好项目高省
红色小象是上美旗下高端母婴护理品牌,产品配方由国内专业母婴洗护配方师团队、日本红道株式会社研发团队进行研发,从源头开始严选原料,科学分析原料各项指标,确保品质遵循国际标准。红色小象的产品一直都很受欢迎!母婴品牌有很多,如十月结晶,子初等都是不错的选择,宝妈们可根据自己的需求来购买适合自己的,或性价比高的,那么在哪可以买到既便宜又有保障的商品呢?大家一定被拉入过薅羊毛群,宝妈好物分享群,淘宝优惠劵群
- 使用Debug-View Kotlin,提升你的Android调试体验!
侯深业Dorian
使用Debug-ViewKotlin,提升你的Android调试体验!去发现同类优质开源项目:https://gitcode.com/1、项目介绍Debug-ViewKotlin是一个专为Android开发者设计的高效、直观的浮层调试控制台。它会在应用界面的最上方提供实时的性能指标和日志信息,包括但不限于内存占用、帧率(FPS)、启动时间和各种自定义的日志数据。只需简单集成,就能让开发和测试过程变
- 互联网医院运营数据采集
争实科技
互联网医院医疗信息化
互联网医院运营数据采集是支撑业务优化、服务监管和决策分析的核心环节,需整合多源异构数据并确保其安全性与有效性。以下从采集内容、技术方法、挑战及解决方案等方面系统阐述:一、核心数据采集内容1.患者与业务数据基础信息:患者人口学特征、病史、过敏史等。服务记录:挂号量、问诊类型(图文/视频)、诊断量、处方量、复诊率、药品配送量。交互指标:平均就诊时长、会话响应时间、服务完成率。2.资源与效率数据医生资源
- GPT-3 面试题
简介1、GPT-3是什么?它是基于什么模型的?GPT-3是一种基于深度学习原理的语言预测模型。它是由OpenAI开发的,可以从互联网数据中生成任何类型的文本。它只需要一小段文本作为输入,就可以生成大量的准确和复杂的机器生成文本²⁴。GPT-3是基于Transformer模型的,使用了仅有解码器的自回归架构。它使用下一个单词预测目标进行训练¹²。GPT-3有8个不同的模型,参数从1.25亿到1750
- HBase 监控 | HBase Metrics 初探(一)
禅克
前言:对于任意一个系统而言,做好监控都是非常重要的,HBase也不例外。经常,我们会从JMX中获取相关指标来做展示、对HBase进行监控,那这些指标是怎么生成的呢?如果你想自定义自己的监控指标又该怎么做呢?基于好奇之心和学习的目的,最近打算学习一下HBase监控相关原理及实现,今天先简单捋一捋思路。1.如何下手?我一向比较喜欢先看项目所依赖的pom文件,打开HBase源码,有两个非常相关的模块:h
- 【Flink图计算源码解析】开篇:Flink图计算总览
hxcaifly
FlinkFlink原理和应用
文章目录1.图计算的作用2.本专题的写作目的3.FlinkGelly引擎总览3.1.Gelly的源码结构1.Graph的存储数据结构2.图的类别3.图的验证以及指标4.图的生成器5.Library6.图的迭代计算7.examples案例4.后记1.图计算的作用哲学上说事物之间普遍存在联系的,通常来说可以将事物看作图的顶点,事物间的联系看作图的边,典型的场景:对应于学术界的文献来说,每篇论文可以看作
- 服务网格可观测性深度实践与创新优化
zzywxc787
网络实时互动经验分享电脑AI编程java
主题:突破服务网格监控瓶颈——基于eBPF的无侵入式全链路可观测性实践技术领域:云原生/微服务/服务网格(ServiceMesh)一、问题背景:传统服务网格监控的痛点在Istio、Linkerd等服务网格架构中,可观测性依赖Sidecar代理(如Envoy)采集指标、日志和链路数据。但存在三大瓶颈:性能损耗:Sidecar的流量拦截与上报消耗额外CPU(10%~15%);数据割裂:应用层业务指标与
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟