如下图,根据yolov5s.yaml文件中结构,参考网上资料使用PPT画的。
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple 控制模型的深度
width_multiple: 0.50 # layer channel multiple 控制Conv通道channel个数
YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x四种模型的区别仅在于depth_multiple 和width_multiple两个参数的不同。
以上三个参数,会用于模型搭建yolo.py文件中
读取 yaml 中的 anchors 和 parameters
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
通过深度参数 depth gain, 在搭建每层时, 实际深度 = 理论深度(每一层的参数n)* depth_multiple,起到动态调整模型深度的作用
n = max(round(n * gd), 1) if n > 1 else n # depth gain
在模型中间层的每一层的实际输出 channel = 理论channel(每一层的参数c2)* width_multiple,起到动态调整模型宽度的作用。
控制宽度(卷积核个数)的代码
c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
anchors:
- [10,13, 16,30, 33,23] # P3/8 ,检测小目标,10,13是一组尺寸,总共三组检测小目标
- [30,61, 62,45, 59,119] # P4/16,检测中目标,共三组
- [116,90, 156,198, 373,326] # P5/32,检测大目标,共三组
yolov5初始化了9个anchors,在三个Detect层使用(3个feature map)中使用,每个feature map的买个grid cell 都有三个anchor进行预测。
分配规则:
YOLOv5 根据经验得到了这么 3 组 anchors,对于很多数据集而言确实挺合适的。但是也不能保证这 3 组 anchors 就适用于所有的数据集,所有 yolov5 还有一个anchor进化的策略:使用 k-means 和遗传进化算法,找到与当前数据集最吻合的 anchors。
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
和backbone基本一样,由4个参数构成
from n params module arguments
0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2]
1 -1 1 18560 models.common.Conv [32, 64, 3, 2]
2 -1 1 18816 models.common.C3 [64, 64, 1]
3 -1 1 73984 models.common.Conv [64, 128, 3, 2]
4 -1 2 115712 models.common.C3 [128, 128, 2]
5 -1 1 295424 models.common.Conv [128, 256, 3, 2]
6 -1 3 625152 models.common.C3 [256, 256, 3]
7 -1 1 1180672 models.common.Conv [256, 512, 3, 2]
8 -1 1 1182720 models.common.C3 [512, 512, 1]
9 -1 1 656896 models.common.SPPF [512, 512, 5]
10 -1 1 131584 models.common.Conv [512, 256, 1, 1]
11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
12 [-1, 6] 1 0 models.common.Concat [1]
13 -1 1 361984 models.common.C3 [512, 256, 1, False]
14 -1 1 33024 models.common.Conv [256, 128, 1, 1]
15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
16 [-1, 4] 1 0 models.common.Concat [1]
17 -1 1 90880 models.common.C3 [256, 128, 1, False]
18 -1 1 147712 models.common.Conv [128, 128, 3, 2]
19 [-1, 14] 1 0 models.common.Concat [1]
20 -1 1 296448 models.common.C3 [256, 256, 1, False]
21 -1 1 590336 models.common.Conv [256, 256, 3, 2]
22 [-1, 10] 1 0 models.common.Concat [1]
23 -1 1 1182720 models.common.C3 [512, 512, 1, False]
24 [17, 20, 23] 1 24273 models.yolo.Detect [4, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
YOLOv5s summary: 214 layers, 7030417 parameters, 7030417 gradients, 16.0 GFLOPs