--------------------------------------------------------------------------------
1001-1167(已更新至最新!)
--------------------------------------------------------------------------------
更多详见>>
OJ题解系列 目录导航帖
--------------------------------------------------------------------------------
PAT (Advanced Level) Practice
--------------------------------------------------------------------------------
这里是PAT (Advanced Level) Practice - III(1101-1150)
这是一个全新的起点,我们完成了乙级考试的小目标,向着甲级考试的大目标前进,你将会看到一片新的世界,在数据结构和算法的大海里遨游
首先,我们讲讲两种考试的区别:
1.题面描述不同,乙级考试采用中文描述,甲级考试采用英文描述
2.题目数量不同,乙级考试是5道题,甲级考试是4道题
3.题目的分值不同,乙级考试的分值分布为15/20/20/20/25,甲级考试的分值分布为20/25/25/30
4.难度不同,甲级考试相对乙级考试来说会增加一个难度级别,主要体现在对数据结构的掌握上,如树和图——主要有BST/BBST/CBT/Heap/DAG,算法方面在原有的难度基础之上加深一点(比方说大模拟),引入了一些简单DP
知己知彼方能百战不殆,我们了解基本的区别之后,大家也不用太担心考试的难度问题,毕竟数据规模n不像竞赛要求那么高,很多算法用最普通的枚举方法往往也能取得满分!
接下来就是题解部分了,每道算法题都标注有对应的算法标签,对于那些易错、较难或是测试点比较特殊的题目会着重标注,本章推荐的题目有:
1102 Invert a Binary Tree (25 分)/ 1106 Lowest Price in Supply Chain (25 分) 1110 Complete Binary Tree (25 分) 1115 Counting Nodes in a BST (30 分) 1123 Is It a Complete AVL Tree (30 分) 1135 Is It A Red-Black Tree (30 分) |
树,二叉树 + DFS/BFS |
---|---|
1111 Online Map (30 分) 1131 Subway Map (30 分) |
图论 + Dijkstra or DFS |
1129 Recommendation System (25 分) | 模拟 + 排序 |
1139 First Contact (30 分) | 图论 + BFS |
--------------------------------------------------------------------------------
算法标签: 排序(枢轴选取)
注意点:
这道题目考察的知识点为快速排序的子算法——枢轴的选取,一个序列中,能成为枢轴的元素A必定是左边全部小于等于A而右边全部大于等于A的点!因此,直接遍历序列即可,复杂度O(n)
#include
using namespace std;
const int maxn = 1e5+5;
int minx[maxn] = {0};
int maxx[maxn] = {0};
int a[maxn];
const int maxnum = INT_MAX;
int b[maxn];
int main(){
int N;
cin >> N;
for(int i=1;i<=N;i++){
cin >> a[i];
}
minx[N+1] = maxnum;
maxx[N+1] = maxnum;
for(int i=1;i<=N;i++){
maxx[i] = max(maxx[i-1],a[i]);
}
for(int i=N;i>=1;i--){
minx[i] = min(minx[i+1],a[i]);
}
int cnt = 0;
for(int i=1;i<=N;i++){
if(a[i]>maxx[i-1] && a[i]<minx[i+1]){
b[cnt++] = a[i];
}
}
sort(b,b+cnt);
cout << cnt << endl;
for(int i=0;i<cnt;i++){
if(i==cnt-1){
cout << b[i];
}else{
cout << b[i] << " ";
}
}
cout << endl;
return 0;
}
算法标签: 树,二叉树 + DFS + BFS
注意点:
1.反转二叉树只需交换左右子树即可
2.整体思路:建树,层序遍历,中序遍历
可参考P1021/P1053/P1079/P1086/P1090,解法相同
#include
using namespace std;
struct node{
int data;
int lchild;
int rchild;
};
node n[105];
int index_num = 0;
int newnode(int v){
n[index_num].data = v;
n[index_num].lchild = -1;
n[index_num].rchild = -1;
return index_num++;
}
bool hashT[105];
int cnt1 = 0;
int cnt2 = 0;
void Level(int root){
queue<int> q;
q.push(root);
while(!q.empty()){
int f = q.front();
if(cnt1==0){
printf("%d",f);
}else{
printf(" %d",f);
}
cnt1++;
q.pop();
if(n[f].lchild!=-1){
q.push(n[f].lchild);
}
if(n[f].rchild!=-1){
q.push(n[f].rchild);
}
}
printf("\n");
}
void InOrder(int root){
if(root==-1){
return;
}
InOrder(n[root].lchild);
if(cnt2==0){
printf("%d",root);
}else{
printf(" %d",root);
}
cnt2++;
InOrder(n[root].rchild);
}
int main(){
int N;
cin >> N;
for(int i=0;i<N;i++){
string s1,s2;
cin >> s1 >> s2;
int now = newnode(i);
if(s1[0]!='-'){
n[now].rchild = s1[0]-'0';
hashT[s1[0]-'0'] = true;
}
if(s2[0]!='-'){
n[now].lchild = s2[0] -'0';
hashT[s2[0]-'0'] = true;
}
}
int root;
for(int i=0;i<N;i++){
if(!hashT[i]){
root = i;
break;
}
}
Level(root);
InOrder(root);
return 0;
}
算法标签: DFS
注意点: 本题是一道DFS模板题,DFS搜索过程中,需要当前因子和factor_sum,数字和sum以及当前的选取数字
#include
using namespace std;
int a[1005];
int muti[1005];
int N,K,P;
int ans = -1;
int ans_a[1005];
void dfs(int depth,int index,int sum,int factor_sum){
if(depth==K && sum==N){
if(factor_sum>ans){
ans = factor_sum;
for(int i=0;i<depth;i++){
ans_a[i] = a[i];
}
}
return;
}
if(sum>N || depth>K){
return;
}
if(index>=1){
a[depth] = index;
dfs(depth+1,index,sum+muti[index],factor_sum+index);
a[depth] = 0;
dfs(depth+0,index-1,sum+0,factor_sum+0);
}
}
int main(){
cin >> N >> K >> P;
int index_start;
for(int i=0;;i++){
int tmp = 1;
for(int j=1;j<=P;j++){
tmp = tmp * i;
}
if(tmp>N){
index_start = i-1;
break;
}else{
muti[i] = tmp;
}
}
dfs(0,index_start,0,0);
if(ans==-1){
printf("Impossible\n");
}else{
printf("%d = ",N);
for(int i=0;i<K;i++){
printf("%d^%d",ans_a[i],P);
if(i!=K-1){
printf(" + ");
}
}
printf("\n");
}
return 0;
}
算法标签: 数论
注意点: 强制类型转换
#include
using namespace std;
int main(){
double a;
int N;
scanf("%d",&N);
long long result = 0;
for(int i=1;i<=N;i++){
scanf("%lf",&a);
result = result + ((long long)(1000.0*a))*(i) * (N-i+1);
}
double r = result*1.0/1000.0;
printf("%.2lf",r);
return 0;
}
算法标签: 模拟
注意点: 模拟边界
#include
using namespace std;
int N;
int m,n;
int b[10005];
int main(){
cin >> N;
for(int i=(ceil)(sqrt(N));i<=N;i++){
if(N%i==0){
m = i;
n = N/i;
break;
}
}
for(int i=0;i<N;i++){
cin >> b[i];
}
sort(b,b+N);
int a[m+1][n+1];
memset(a,0,sizeof(a));
int i = 0;
int j = 0;
while(N){
while(j<n && !a[i][j]){
a[i][j++] = b[--N];
}
j--;
i++;
while(i<m && !a[i][j]){
a[i++][j] = b[--N];
}
i--;
j--;
while(j>=0 && !a[i][j]){
a[i][j--] = b[--N];
}
j++;
i--;
while(i>=0 && !a[i][j]){
a[i--][j] = b[--N];
}
i++;
j++;
}
for(int i=0;i<m;i++){
for(int j=0;j<n;j++){
if(j!=n-1){
cout << a[i][j] << " ";
}else{
cout << a[i][j];
}
}
cout << endl;
}
return 0;
}
算法标签: 树,二叉树 + DFS
注意点: 参考P1021/P1053/P1079/P1086/P1090/P1102,解法相同
#include
using namespace std;
const int maxn = 1e5+5;
vector<int> child[maxn];
int N;
double P;
double r;
bool hashT[maxn];
int mindepth = INT_MAX;
int minnum = 0;
void dfs(int depth,int root){
if(child[root].size()==0){
if(depth<mindepth){
mindepth = depth;
minnum = 1;
}else if(depth==mindepth){
minnum ++;
}
return;
}
for(int i=0;i<child[root].size();i++){
dfs(depth+1,child[root][i]);
}
}
int main(){
cin >> N >> P >> r;
for(int i=0;i<N;i++){
int k;
scanf("%d",&k);
if(k==0){
continue;
}else{
for(int j=0;j<k;j++){
int t;
scanf("%d",&t);
child[i].push_back(t);
hashT[t] = 1;
}
}
}
int root;
for(int i=0;i<N;i++){
if(!hashT[i]){
root = i;
break;
}
}
dfs(0,root);
printf("%.4lf %d\n",P*pow(1+r/100.0,mindepth),minnum);
return 0;
}
算法标签: 并查集
注意点: 路径压缩
#include
using namespace std;
int father[1005];
int vis[1005];
int course[1005];
int findfather(int x){
if(x == father[x]){
return x;
}else{
int F = findfather(father[x]);
father[x] = F;
return F;
}
}
void Union(int a,int b){
int fa = findfather(a);
int fb = findfather(b);
if(fa!=fb){
father[fa] = fb;
}
}
vector<int> v;
int main(){
int N;
scanf("%d",&N);
for(int i=1;i<=N;i++){
father[i] = i;
}
for(int i=1;i<=N;i++){
int k;
scanf("%d:",&k);
for(int j=0;j<k;j++){
int t;
scanf("%d",&t);
if(!course[t]){
course[t] = i;
}
Union(i,findfather(course[t]));
}
}
for(int i=1;i<=N;i++){
vis[findfather(i)]++;
}
for(int i=1;i<=N;i++){
if(vis[i]){
v.push_back(vis[i]);
}
}
sort(v.begin(),v.end());
reverse(v.begin(),v.end());
printf("%d\n",v.size());
for(int i=0;i<v.size();i++){
if(i==0){
printf("%d",v[i]);
}else{
printf(" %d",v[i]);
}
}
printf("\n");
return 0;
}
算法标签: 模拟
注意点: 关于符合条件的数,需要筛选,然后按要求输出即可
#include
using namespace std;
int main(){
int N;
cin.tie(0);
cout.tie(0);
cin >> N;
int count = 0;
double res = 0.0;
for(int i=0;i<N;i++){
char str1[100];
scanf("%s",str1);
double num = 0.0;
sscanf(str1,"%lf",&num);
char str2[100];
sprintf(str2,"%.2lf",num);
bool flag = false;
for(int j=0;str1[j]!='\0';j++){
if(str1[j]!=str2[j]){
flag = true;
break;
}
}
if(flag || num<-1000 || num>1000){
cout << "ERROR: "<< str1 << " is not a legal number" << endl;
}else{
count ++;
res += num;
}
}
if(count==1){
printf("The average of 1 number is %.2lf\n",res);
}else if(count==0){
cout << "The average of 0 numbers is Undefined" << endl;
}else{
res = res / count;
printf("The average of %d numbers is %.2lf\n",count,res);
}
return 0;
}
算法标签: 排序
#include
using namespace std;
typedef struct photo{
string name;
int height;
}photo;
const int maxn = 1e4+5;
photo p[maxn];
int a[maxn];
int N,K;
bool cmp(photo p1,photo p2){
if(p1.height>p2.height){
return true;
}else if(p1.height==p2.height){
if(p1.name<p2.name){
return true;
}else{
return false;
}
}else{
return false;
}
}
int main(){
cin.tie(0);
cout.tie(0);
cin >> N >> K;
int num = (int)(N/K);
for(int i=0;i<N;i++){
cin >> p[i].name >> p[i].height;
}
sort(p,p+N,cmp);
int start = (N - num*K) + num;
for(int i=0;i<start;i++){
if(i%2==1){
int site = (start/2)-((ceil)(i*1.0/2.0));
a[site] = i;
}else{
int site = (start/2)+((ceil)(i*1.0/2.0));
a[site] = i;
}
}
for(int i=0;i<start;i++){
if(i==0){
cout << p[a[i]].name;
}else{
cout << " " << p[a[i]].name;
}
}
cout << endl;
for(int i=1;i<K;i++){
for(int j=0;j<num;j++){
if(j%2==1){
int site = (num/2)-((ceil)(j*1.0/2.0));
a[site] = (i-1)*num + start + j;
}else{
int site = (num/2)+((ceil)(j*1.0/2.0));
a[site] = (i-1)*num + start + j;
}
}
for(int j=0;j<num;j++){
if(j==0){
cout << p[a[j]].name;
}else{
cout << " " << p[a[j]].name;
}
}
cout << endl;
}
return 0;
}
算法标签: 树,二叉树 + BFS
注意点: 完全二叉树的定义,具体解法可参考P1021/P1053/P1079/P1086/P1090/P1102/P1106,解法相同
#include
using namespace std;
int N;
struct node{
int lchild = -1;
int rchild = -1;
};
node tree[105];
bool hashT[105];
int cnt = 0;
int LevelOrder(int root){
queue<int> q;
q.push(root);
int last;
while(!q.empty()){
int f = q.front();
q.pop();
last = f;
cnt++;
if(cnt*2+1<=N){
if(tree[f].lchild==-1 || tree[f].rchild==-1){
return -1;
}
}else if(cnt*2<=N){
if(tree[f].lchild==-1 || tree[f].rchild!=-1){
return -1;
}
}else{
if(tree[f].lchild!=-1 || tree[f].rchild!=-1){
return -1;
}
}
if(tree[f].lchild!=-1){
q.push(tree[f].lchild);
}
if(tree[f].rchild!=-1){
q.push(tree[f].rchild);
}
}
if(cnt==N){
return last;
}else{
return -1;
}
}
int main(){
cin >> N;
for(int i=0;i<N;i++){
string s;
cin >> s;
if(s[0]>='0' && s[0]<='9'){
int t = 0;
for(int i=0;i<s.size();i++){
t = t*10 +s[i]-'0';
}
tree[i].lchild = t;
hashT[t] = 1;
}else{
tree[i].lchild = -1;
}
cin >> s;
if(s[0]>='0' && s[0]<='9'){
int t = 0;
for(int i=0;i<s.size();i++){
t = t*10 +s[i]-'0';
}
tree[i].rchild = t;
hashT[t] = 1;
}else{
tree[i].rchild = -1;
}
}
int root;
for(int i=0;i<N;i++){
if(!hashT[i]){
root = i;
break;
}
}
int f = LevelOrder(root);
if(f!=-1){
printf("YES %d\n",f);
}else{
printf("NO %d\n",root);
}
return 0;
}
算法标签: 图论 + Dijkstra
注意点: 路径的记录和保存,参考P1003/P1018/P1030/P1072/P1087,解法相同
#include
using namespace std;
struct node{
int v;
int length;
int time;
};
node temp;
vector<node> G[505];
int N,M;
int S,T;
bool vis[505];
int vertex[505];
int dp[505];
int Time[505];
int path1[505];
int path2[505];
void dijstra1(int u){
memset(vis,0,sizeof(vis));
memset(dp,0x3f,sizeof(dp));
memset(Time,0x3f,sizeof(Time));
dp[u] = 0;
Time[u] = 0;
for(int i=0;i<N;i++){
int u = -1;
int minnum = INT_MAX;
for(int j=0;j<N;j++){
if(!vis[j] && dp[j]<minnum){
minnum = dp[j];
u = j;
}
}
if(u==-1){
return;
}
vis[u] = true;
for(int j=0;j<G[u].size();j++){
int v = G[u][j].v;
int dis = G[u][j].length;
int t = G[u][j].time;
if(!vis[v]){
if(dp[u]+dis<dp[v]){
dp[v] = dp[u] + dis;
Time[v] = Time[u] + t;
path1[v] = u;
}else if(dp[u]+dis==dp[v]){
if(Time[u] + t < Time[v]){
Time[v] = Time[u] + t;
path1[v] = u;
}
}
}
}
}
}
void dijstra2(int u){
memset(vis,0,sizeof(vis));
memset(Time,0x3f,sizeof(Time));
memset(vertex,0x3f,sizeof(vertex));
Time[u] = 0;
vertex[u] = 0;
for(int i=0;i<N;i++){
int u = -1;
int minnum = INT_MAX;
for(int j=0;j<N;j++){
if(!vis[j] && Time[j]<minnum){
minnum = Time[j];
u = j;
}
}
if(u==-1){
return;
}
vis[u] = true;
for(int j=0;j<G[u].size();j++){
int v = G[u][j].v;
int dis = G[u][j].length;
int t = G[u][j].time;
if(!vis[v]){
if(Time[u]+t<Time[v]){
Time[v] = Time[u] + t;
vertex[v] = vertex[u] + 1;
path2[v] = u;
}else if(Time[u] + t == Time[v]){
if(vertex[u]+1<vertex[v]){
vertex[v] = vertex[u] + 1;
path2[v] = u;
}
}
}
}
}
}
vector<int> ans1;
vector<int> ans2;
void dfs1(int T){
if(T==S){
ans1.push_back(T);
return;
}
dfs1(path1[T]);
ans1.push_back(T);
}
void dfs2(int T){
if(T==S){
ans2.push_back(T);
return;
}
dfs2(path2[T]);
ans2.push_back(T);
}
int main(){
scanf("%d%d",&N,&M);
for(int i=0;i<M;i++){
int u,v;
int q;
int length,time;
scanf("%d%d%d%d%d",&u,&v,&q,&length,&time);
if(q==1){
temp.v = v;
temp.length = length;
temp.time = time;
G[u].push_back(temp);
}else{
temp.v = v;
temp.length = length;
temp.time = time;
G[u].push_back(temp);
temp.v = u;
G[v].push_back(temp);
}
}
scanf("%d%d",&S,&T);
dijstra1(S);
dfs1(T);
dijstra2(S);
dfs2(T);
if(ans1==ans2){
printf("Distance = %d; ",dp[T]);
printf("Time = %d: ",Time[T]);
for(int i=0;i<ans1.size();i++){
if(i==0){
printf("%d",ans1[i]);
}else{
printf(" -> %d",ans1[i]);
}
}
printf("\n");
}else{
printf("Distance = %d: ",dp[T]);
for(int i=0;i<ans1.size();i++){
if(i==0){
printf("%d",ans1[i]);
}else{
printf(" -> %d",ans1[i]);
}
}
printf("\n");
printf("Time = %d: ",Time[T]);
for(int i=0;i<ans2.size();i++){
if(i==0){
printf("%d",ans2[i]);
}else{
printf(" -> %d",ans2[i]);
}
}
printf("\n");
}
return 0;
}
算法标签: 字符串 + 模拟
#include
using namespace std;
string s = "abcdefghijklmnopqrstuvwxyz0123456789_";
bool hashT[40];
string s1 = "";
int main(){
int n;
cin >> n;
string in;
cin >> in;
string out = "";
for(int i=0;i<in.size();i++){
if(in[i]>='a' && in[i]<='z'){
if(!hashT[in[i]-'a']){
hashT[in[i]-'a'] = 1;
s1 += in[i];
}
}else if(in[i]>='0' && in[i]<='9'){
if(!hashT[in[i]-'0'+26]){
hashT[in[i]-'0'+26] = 1;
s1 += in[i];
}
}else{
if(!hashT[36]){
hashT[36] = 1;
s1 += in[i];
}
}
}
for(int i=0;i<s1.size();i++){
string t = "";
for(int j=0;j<n;j++){
t += s1[i];
}
string tmp = in;
int x = tmp.find(t);
int cnt = 0;
while(x!=-1){
cnt++;
tmp = tmp.substr(0,x) + s1[i] + tmp.substr(x+n);
x = tmp.find(t,x+1);
}
int res = 0;
for(int j=0;j<tmp.size();j++){
if(tmp[j]==s1[i]){
res++;
}
}
if(res == cnt && cnt){
in = tmp;
out += s1[i];
}
}
cout << out << endl;
cout << in << endl;
return 0;
}
算法标签: 排序
#include
using namespace std;
const int maxn = 1e5+5;
int a[maxn];
int main(){
int N;
scanf("%d",&N);
for(int i=0;i<N;i++){
scanf("%d",&a[i]);
}
sort(a,a+N);
long long ans = 0;
long long res;
if(N%2){
res = 1;
}else{
res = 0;
}
for(int i=0;i<N/2;i++){
ans -= a[i];
}
for(int i=N/2;i<N;i++){
ans += a[i];
}
printf("%lld %lld\n",res,ans);
return 0;
}
算法标签: 并查集 + 排序
注意点: 本题极易与树、二叉树知识点混淆,该题的正确解法是并查集操作,合并parent与child,然后划定area
#include
using namespace std;
struct person{
int father;
int mother;
vector<int> child;
int Mstate;
int Area;
bool f = false;
};
person p[10005];
int father[10005];
int findfather(int x){
if(x == father[x]){
return x;
}else{
int F = findfather(father[x]);
father[x] = F;
return F;
}
}
void Union(int a,int b){
int fa = findfather(a);
int fb = findfather(b);
if(fa!=fb){
if(fa<fb){
father[fb] = fa;
}else{
father[fa] = fb;
}
}
}
int num[10005];
double area[10005];
double state[10005];
struct ans{
int ID;
int number;
double state;
double area;
};
ans a[10005];
bool vis[10005];
bool hashT[10005];
int cnt = 0;
bool cmp(ans a1,ans a2){
if(a1.area!=a2.area){
return a1.area > a2.area;
}else{
return a1.ID < a2.ID;
}
}
int main(){
for(int i=0;i<=9999;i++){
father[i] = i;
}
int N;
scanf("%d",&N);
for(int i=0;i<N;i++){
int id;
scanf("%d",&id);
hashT[id] = true;
scanf("%d%d",&p[id].father,&p[id].mother);
if(p[id].father!=-1){
hashT[p[id].father] = true;
Union(id,p[id].father);
}
if(p[id].mother!=-1){
hashT[p[id].mother] = true;
Union(id,p[id].mother);
}
int k;
scanf("%d",&k);
for(int j=0;j<k;j++){
int cid;
scanf("%d",&cid);
p[id].child.push_back(cid);
hashT[cid] = true;
Union(id,cid);
}
scanf("%d%d",&p[id].Mstate,&p[id].Area);
p[id].f = true;
}
for(int i=0;i<=9999;i++){
int F = findfather(i);
num[F]++;
if(p[i].f){
area[F] += p[i].Area;
state[F] += p[i].Mstate;
}
}
for(int i=0;i<=9999;i++){
if(hashT[i]){
int F = findfather(i);
if(!vis[F] && num[F]){
vis[F] = true;
a[cnt].ID = i;
a[cnt].number = num[F];
a[cnt].state = state[F]/(num[F]*1.0);
a[cnt].area = area[F]/(num[F]*1.0);
cnt++;
}
}
}
sort(a,a+cnt,cmp);
printf("%d\n",cnt);
for(int i=0;i<cnt;i++){
printf("%04d %d %.3lf %.3lf\n",a[i].ID,a[i].number,a[i].state,a[i].area);
}
return 0;
}
算法标签: 树,二叉树 + DFS
注意点: 树 基础题,可参考P1021/P1053/P1079/P1086/P1090/P1102/P1106/P1110,解法相同
#include
using namespace std;
struct node{
int data;
node *lchild;
node *rchild;
};
node* root = NULL;
node* newnode(int v){
node* Node = new node;
Node->data = v;
Node->lchild = NULL;
Node->rchild = NULL;
return Node;
}
void insert(node* &root,int x){
if(root==NULL){
root = newnode(x);
return;
}
if(x<=root->data){
insert(root->lchild,x);
}else{
insert(root->rchild,x);
}
}
int a[1005];
int maxdepth = -1;
void dfs(node* root,int depth){
if(root==NULL){
return;
}
a[depth]++;
maxdepth = max(maxdepth,depth);
if(root->lchild){
dfs(root->lchild,depth+1);
}
if(root->rchild){
dfs(root->rchild,depth+1);
}
}
int main(){
int N;
cin >> N;
for(int i=0;i<N;i++){
int t;
cin >> t;
insert(root,t);
}
dfs(root,0);
int n1,n2;
n1 = a[maxdepth];
n2 = a[maxdepth-1];
printf("%d + %d = %d\n",n1,n2,n1+n2);
return 0;
}
算法标签: 素数 + 模拟
#include
using namespace std;
int N,K;
const int maxn = 1e4+5;
typedef struct competition{
int ID;
int rank;
bool check;
bool isin;
}competition;
competition c[maxn];
int isprime(int num){
if(num<2){
return 0;
}else{
for(int i=2;i<=sqrt(num);i++){
if(num%i==0){
return 0;
}
}
return 1;
}
}
int main(){
cin >> N;
for(int i=0;i<N;i++){
int id;
cin >> id;
c[id].ID = id;
c[id].rank = i+1;
c[id].check = false;
c[id].isin = true;
}
cin >> K;
for(int i=0;i<K;i++){
int id;
cin >> id;
int g,s,b,q;
g = id % 10;
s = id/10 %10;
b = id/100 %10;
q = id /1000;
cout << q << b << s << g;
if(c[id].isin==true){
if(c[id].check==true){
cout << ": Checked"<< endl;
}else{
if(c[id].rank==1){
cout << ": Mystery Award"<<endl;
c[id].check=true;
}else if(isprime(c[id].rank)){
cout << ": Minion" << endl;
c[id].check=true;
}else{
cout << ": Chocolate" << endl;
c[id].check=true;
}
}
}else{
cout << ": Are you kidding?" << endl;
}
}
return 0;
}
算法标签: 排序
#include
using namespace std;
int N;
const int maxn = 1e5+5;
int a[maxn];
int E;
bool cmp(int a,int b){
return a>b;
}
int main(){
cin >> N;
cin.tie(0);
cout.tie(0);
for(int i=1;i<=N;i++){
cin >> a[i];
}
sort(a+1,a+N+1,cmp);
for(int i=1;i<=N;i++){
if(a[i]>i){
E = i;
}else{
break;
}
}
cout << E << endl;
return 0;
}
算法标签: 并查集
注意点: 路径压缩
#include
using namespace std;
int N,Q;
int father[10005];
bool bird[10005];
int findfather(int x){
if(x == father[x]){
return x;
}else{
int F = findfather(father[x]);
father[x] = F;
return F;
}
}
void Union(int a,int b){
int fa = findfather(a);
int fb = findfather(b);
if(fa!=fb){
father[fa] = fb;
}
}
int main(){
for(int i=0;i<=10000;i++){
father[i] = i;
}
scanf("%d",&N);
for(int i=0;i<N;i++){
int K;
scanf("%d",&K);
int top;
scanf("%d",&top);
bird[top] = true;
for(int j=1;j<K;j++){
int t;
scanf("%d",&t);
bird[t] = true;
Union(top,t);
}
}
int cnt = 0;
set<int> s;
for(int i=1;i<=10000;i++){
if(bird[i]){
s.insert(findfather(i));
cnt++;
}
}
printf("%d %d\n",s.size(),cnt);
scanf("%d",&Q);
for(int i=0;i<Q;i++){
int u,v;
scanf("%d%d",&u,&v);
int fa = findfather(u);
int fb = findfather(v);
if(fa == fb){
printf("Yes\n");
}else{
printf("No\n");
}
}
return 0;
}
算法标签: 树,二叉树
注意点: 整体的思路和普通二叉树建树的方法一样,先定根结点,我们从后序遍历倒着找根,然后再从前序遍历中找这个结点,若前序遍历的第一个结点和后序遍历的最后一个结点相同,意味着这个就是根结点,可建立该结点,然后从后序遍历中找右子树的根结点,根据该结点,将前序遍历分成2部分,左半部分对应着左子树,右半部分对应着右子树,可递归建树,但是这里还存在一种情况,就是左子树为空的时候,此时只有一棵子树,那么这个结点既可以当成左子树,也可以当作右子树,也就是所说的不唯一,此时,我们不妨将该结点并入右子树之中,而左子树设置为空
#include
using namespace std;
int N;
int pre[35];
int post[35];
struct node{
int data;
node* lchild;
node* rchild;
};
node* newnode(int v){
node* Node = new node;
Node->data = v;
Node->lchild = NULL;
Node->rchild = NULL;
return Node;
}
int cnt = 0;
int a[35];
void inorder(node* root){
if(root==NULL){
return;
}
inorder(root->lchild);
a[cnt++] = root->data;
inorder(root->rchild);
}
bool f = true;
node* Create(int preL,int preR,int postL,int postR){
if(preL == preR){
return newnode(pre[preL]);
}
if(pre[preL] == post[postR]){
node* root = newnode(pre[preL]);
int k;
for(int i=preL+1;i<=preR;i++){
if(pre[i] == post[postR-1]){
k = i;
break;
}
}
int numleft = k-preL;
if(k-preL>1){
root->lchild = Create(preL+1,preL+numleft-1,postL,postL+numleft-2);
}else{
f = false;
}
root->rchild = Create(preL+numleft,preR,postL+numleft-1,postR-1);
return root;
}
}
int main(){
scanf("%d",&N);
for(int i=1;i<=N;i++){
scanf("%d",&pre[i]);
}
for(int i=1;i<=N;i++){
scanf("%d",&post[i]);
}
node *root = Create(1,N,1,N);
if(f){
printf("Yes\n");
}else{
printf("No\n");
}
inorder(root);
for(int i=0;i<cnt;i++){
if(i==0){
printf("%d",a[i]);
}else{
printf(" %d",a[i]);
}
}
printf("\n");
return 0;
}
算法标签: 模拟
#include
using namespace std;
int N;
int a[40];
int main(){
cin.tie(0);
cout.tie(0);
cin >> N;
for(int i=0;i<N;i++){
int s;
int result = 0;
cin >> s;
while(s>0){
result += s%10;
s /= 10;
}
a[result] = 1;
}
int count = 0;
for(int i=0;i<40;i++){
if(a[i]){
count++;
}
}
cout << count << endl;
count = 0;
for(int i=0;i<40;i++){
if(a[i]){
if(count==0){
cout << i;
}else{
cout << " " << i;
}
count++;
}
}
return 0;
}
算法标签: 排序
#include
using namespace std;
int N,M;
const int maxn = 1e5+5;
int a[maxn];
int out[maxn];
int pairs[maxn];
typedef struct man{
int pair1;
int pair2;
bool flag1;
bool flag2;
}man;
man m[maxn];
int main(){
cin.tie(0);
cout.tie(0);
cin >> N;
for(int i=0;i<N;i++){
int p,q;
cin >> p >> q;
a[p] = 1;
a[q] = 1;
m[i+1].pair1 = p;
m[i+1].pair2 = q;
m[i+1].flag1 = false;
m[i+1].flag2 = false;
pairs[p] = i+1;
pairs[q] = i+1;
}
cin >> M;
int count = 0;
for(int i=0;i<M;i++){
int n;
cin >> n;
if(!a[n]){
out[count++] = n;
}else{
int pairnum = pairs[n];
if(n==m[pairnum].pair1){
m[pairnum].flag1 = true;
}else if(n==m[pairnum].pair2){
m[pairnum].flag2 = true;
}
}
}
for(int i=1;i<=N;i++){
if(m[i].flag1 == false && m[i].flag2 == true){
out[count++] = m[i].pair2;
}else if(m[i].flag1 == true && m[i].flag2 == false){
out[count++] = m[i].pair1;
}
}
sort(out,out+count);
cout << count << endl;
for(int i=0;i<count;i++){
int w,q,b,s,g;
w = out[i] / 10000;
q = out[i] / 1000 % 10;
b = out[i] / 100 % 10;
s = out[i] / 10 % 10;
g = out[i] % 10;
if(i==0){
cout << w << q << b << s << g;
}else{
cout << " " << w << q << b << s << g;
}
}
return 0;
}
算法标签: 图论 汉密尔顿环路
注意点: 所有顶点均访问一遍后即为汉密尔顿环路
#include
using namespace std;
vector<int> G[205];
int N,M,K;
int a[1005];
bool vis[205];
int main(){
scanf("%d%d",&N,&M);
for(int i=1;i<=M;i++){
int u,v;
scanf("%d%d",&u,&v);
G[u].push_back(v);
G[v].push_back(u);
}
scanf("%d",&K);
for(int i=1;i<=K;i++){
memset(vis,0,sizeof(vis));
int n;
scanf("%d",&n);
for(int j=1;j<=n;j++){
scanf("%d",&a[j]);
}
if(n!=N+1){
printf("NO\n");
}else{
if(a[1] == a[n]){
bool f = false;
for(int j=1;j<=N;j++){
if(!vis[a[j]]){
vis[a[j]] = true;
}else{
f = true;
break;
}
}
for(int j=1;j<=N;j++){
int u = a[j];
int v = a[j+1];
bool f1 = true;
for(int k=0;k<G[u].size();k++){
int v1 = G[u][k];
if(v1 == v){
f1 = false;
break;
}
}
if(f1){
f = true;
break;
}
}
if(!f){
printf("YES\n");
}else{
printf("NO\n");
}
}else{
printf("NO\n");
}
}
}
return 0;
}
算法标签: 树,二叉树 + BFS
注意点: 先按照平衡树插入每个结点,然后再判断完全二叉树是否满足,此外,可参考P1021/P1053/P1079/P1086/P1090/P1102/P1106/P1110/P1115,解法相同
#include
using namespace std;
int a[25];
struct node{
int data;
node* lchild;
node* rchild;
int height;
};
node* newnode(int v){
node* Node = new node;
Node->data = v;
Node->lchild = NULL;
Node->rchild = NULL;
Node->height = 1;
return Node;
}
int getheight(node* root){
if(root==NULL){
return 0;
}
return root->height;
}
int bf(node* root){
return getheight(root->lchild) - getheight(root->rchild);
}
void updateheight(node* root){
root->height = max(getheight(root->lchild),getheight(root->rchild)) + 1;
}
void L(node* &root){
node* temp = root->rchild;
root->rchild = temp->lchild;
temp->lchild = root;
updateheight(root);
updateheight(temp);
root = temp;
}
void R(node* &root){
node* temp = root->lchild;
root->lchild = temp->rchild;
temp->rchild = root;
updateheight(root);
updateheight(temp);
root = temp;
}
void insert(node* &root,int v){
if(root == NULL){
root = newnode(v);
return;
}
if(v<root->data){
insert(root->lchild,v);
updateheight(root);
if(bf(root) == 2){
if(bf(root->lchild)==1){
R(root);
}else if(bf(root->lchild)==-1){
L(root->lchild);
R(root);
}
}
}else{
insert(root->rchild,v);
updateheight(root);
if(bf(root)==-2){
if(bf(root->rchild)==-1){
L(root);
}else if(bf(root->rchild)==1){
R(root->rchild);
L(root);
}
}
}
}
int flag = 1;
bool isCBT = true;
void LevelOrder(node* root){
queue<node*> q;
q.push(root);
int cnt = 0;
while(!q.empty()){
node* f = q.front();
q.pop();
if(cnt==0){
printf("%d",f->data);
}else{
printf(" %d",f->data);
}
cnt++;
if(f->lchild){
if(flag == -1){
isCBT = false;
}
q.push(f->lchild);
}else{
flag = -1;
}
if(f->rchild){
if(flag == -1){
isCBT = false;
}
q.push(f->rchild);
}else{
flag = -1;
}
}
printf("\n");
}
int main(){
int N;
scanf("%d",&N);
for(int i=1;i<=N;i++){
scanf("%d",&a[i]);
}
node* root = NULL;
for(int i=1;i<=N;i++){
insert(root,a[i]);
}
LevelOrder(root);
if(isCBT){
printf("YES\n");
}else{
printf("NO\n");
}
return 0;
}
算法标签: 模拟
#include
using namespace std;
int M,N,S;
const int maxn = 1e3+5;
string award[maxn];
int main(){
cin >> M >> N >> S;
string str;
int count = 1;
int num = 0;
for(int i=0;i<M;i++){
cin >> str;
if((count-S)%N==0 && count>=S){
bool flag = false;
for(int i=0;i<num;i++){
if(award[i]==str){
flag = true;
break;
}
}
if(flag==true){
continue;
}else if(flag==false){
cout << str << endl;
award[num++] = str;
count++;
}
}else{
count++;
}
}
if(num==0){
cout << "Keep going..." << endl;
}
return 0;
}
算法标签: 模拟 + 排序
#include
using namespace std;
int N;
const int maxn = 1e5+5;
int a[maxn];
int main(){
cin.tie(0);
cout.tie(0);
cin >> N;
for(int i=0;i<N;i++){
cin >> a[i];
}
sort(a,a+N);
double res = (a[0]+a[1])*1.0/2.0;
for(int i=2;i<N;i++){
res = (res +a[i])/2.0;
}
int result = (floor)(res);
cout << result << endl;
return 0;
}
算法标签: 图论 + 欧拉回路
注意点:
1.欧拉路径的定义:全是偶数度结点且图连通为欧拉路径,若存在2个奇数度结点且其余都是偶数度结点,且起点和终点分别为奇数度结点的连通图,称为半欧拉路径,若以上都不是,那么不是欧拉路径
2.此题有几个容易错误的点:
首先判断图是否连通,不连通,那么一定不是欧拉图
其次,注意起点和终点,欧拉回路要求起点和终点相同;半欧拉回路要求分别是两个不同的奇数度顶点
3.题目中未对简单路径和复杂路径作区分,因此存在重边也是合理的
#include
using namespace std;
int N,M;
int degree[505];
vector<int> G[505];
int odd = 0,even = 0;
bool vis[505];
int cnt = 0;
void bfs(int s){
queue<int> q;
vis[s] = true;
q.push(s);
while(!q.empty()){
int u = q.front();
q.pop();
for(int i=0;i<G[u].size();i++){
int v = G[u][i];
if(!vis[v]){
vis[v] = true;
q.push(v);
}
}
}
}
int main(){
scanf("%d%d",&N,&M);
for(int i=0;i<M;i++){
int u,v;
scanf("%d%d",&u,&v);
G[u].push_back(v);
G[v].push_back(u);
degree[u]++;
degree[v]++;
}
for(int i=1;i<=N;i++){
if(degree[i]%2){
odd++;
}else{
even++;
}
if(i==1){
printf("%d",degree[i]);
}else{
printf(" %d",degree[i]);
}
}
printf("\n");
for(int i=1;i<=N;i++){
if(!vis[i]){
bfs(i);
cnt++;
}
}
if(odd == 0 && cnt==1){
printf("Eulerian\n");
}else if(odd == 2 && cnt==1){
printf("Semi-Eulerian\n");
}else{
printf("Non-Eulerian\n");
}
return 0;
}
算法标签: 树,二叉平衡树 + 排序
注意点:
1.首先根据后序和中序建树,此方法比较常规。
2.然后进行层序遍历,不同层的结点存储方式相反(zig-zag在本题目中的含义),输出结果即可
#include
using namespace std;
int N;
int in[35];
int post[35];
int levelmax = 0;
vector<int> output[35];
struct node{
int data;
node* lchild;
node* rchild;
int level = 0;
};
node* newnode(int v){
node* Node = new node;
Node->data = v;
Node->lchild = NULL;
Node->rchild = NULL;
return Node;
}
node* Create(int inL,int inR,int postL,int postR){
if(inL>inR){
return NULL;
}
node* root = newnode(post[postR]);
int k;
for(int i=inL;i<=inR;i++){
if(in[i] == post[postR]){
k = i;
break;
}
}
int numleft = k-inL;
root->lchild = Create(inL,inL+numleft-1,postL,postL+numleft-1);
root->rchild = Create(inL+numleft+1,inR,postL+numleft,postR-1);
return root;
}
void levelorder(node* root){
queue<node*> q;
q.push(root);
root->level = 0;
while(!q.empty()){
node* f = q.front();
q.pop();
output[f->level].push_back(f->data);
levelmax = max(levelmax,f->level);
if(f->lchild){
f->lchild->level = f->level + 1;
q.push(f->lchild);
}
if(f->rchild){
f->rchild->level = f->level + 1;
q.push(f->rchild);
}
}
}
int main(){
scanf("%d",&N);
for(int i=1;i<=N;i++){
scanf("%d",&in[i]);
}
for(int i=1;i<=N;i++){
scanf("%d",&post[i]);
}
node* root = Create(1,N,1,N);
levelorder(root);
for(int i=0;i<=levelmax;i++){
if(i%2==0){
reverse(output[i].begin(),output[i].end());
}
}
int cnt = 0;
for(int i=0;i<=levelmax;i++){
for(int j=0;j<output[i].size();j++){
if(cnt == 0){
printf("%d",output[i][j]);
}else{
printf(" %d",output[i][j]);
}
cnt++;
}
}
printf("\n");
return 0;
}
算法标签: 模拟
注意点:
N皇后的判定问题
4个方向上均需要判断,同一行row,同一列column,主对角线,副对角线
#include
using namespace std;
int a[1005];
int check(int row1,int column1,int row2,int column2){
if(row1 == row2){
return 0;
}
if(column1-row1 == column2-row2){
return 0;
}
if(column1+row1 == column2+row2){
return 0;
}
return 1;
}
int main(){
int K;
scanf("%d",&K);
for(int i=1;i<=K;i++){
memset(a,0,sizeof(a));
int N;
scanf("%d",&N);
for(int i=1;i<=N;i++){
scanf("%d",&a[i]);
}
int f;
for(int i=1;i<=N-1;i++){
f = 1;
for(int j=i+1;j<=N;j++){
f = check(a[i],i,a[j],j);
if(f == 0){
break;
}
}
if(f == 0){
break;
}
}
if(f){
printf("YES\n");
}else{
printf("NO\n");
}
}
return 0;
}
算法标签: 模拟 + 排序
注意点:
模拟推荐系统的实现,一道好题!
考察了集合与结构体的复合结构,由于集合本身是红黑树的实现方式,因此定义的时候必须给出元素的优先级次序,然后根据访问的次数高低、key值进行排序,最后输出每时刻的结果
#include
using namespace std;
const int maxn = 5e4+5;
int a[maxn];
int hashT[maxn];
struct node{
int key;
int value;
bool operator < (const node &a) const{
if(a.value!= value){
return value > a.value;
}else{
return key < a.key;
}
}
};
set<node> s;
int main(){
int N,K;
scanf("%d%d",&N,&K);
for(int i=1;i<=N;i++){
scanf("%d",&a[i]);
}
for(int i=1;i<=N;i++){
if(i>1){
printf("%d:",a[i]);
int cnt = 0;
auto it = s.begin();
while(cnt<K && cnt<s.size()){
printf(" %d",it->key);
it++;
cnt++;
}
printf("\n");
}
node temp;
temp.key = a[i];
temp.value = hashT[a[i]];
auto it = s.find(temp);
if(it!=s.end()){
s.erase(it);
}
hashT[a[i]]++;
temp.value = hashT[a[i]];
s.insert(temp);
}
return 0;
}
算法标签: 树,二叉树 + DFS
注意点:
中缀表达式本质上还是中序遍历,因此建树+中序遍历即可,注意进入子树需要加括号,以表示优先级的关系!
#include
using namespace std;
int N;
int root;
struct node{
string s;
int lchild;
int rchild;
};
node tree[25];
bool hashT[25];
stack<char> s;
void InOrder(int u){
if(u == -1){
return;
}
if(u!=root && (tree[u].lchild!=-1 || tree[u].rchild!=-1)){
cout << "(";
}
InOrder(tree[u].lchild);
cout << tree[u].s;
InOrder(tree[u].rchild);
if(u!=root && (tree[u].lchild!=-1 || tree[u].rchild!=-1)){
cout << ")";
}
}
int main(){
scanf("%d",&N);
for(int i=1;i<=N;i++){
cin >> tree[i].s >> tree[i].lchild >> tree[i].rchild;
}
for(int i=1;i<=N;i++){
if(tree[i].lchild!=-1){
hashT[tree[i].lchild] = true;
}
if(tree[i].rchild!=-1){
hashT[tree[i].rchild] = true;
}
}
for(int i=1;i<=N;i++){
if(!hashT[i]){
root = i;
break;
}
}
InOrder(root);
return 0;
}
算法标签: 图论 + Dijkstra + DFS
注意点:
一道好题!实质上仍然是Dijkstra+DFS的模板题,可参考P1003/P1018/P1030/P1072/P1087/P1111
首先是求最短路,这个用Dijkstra算法肯定没问题,本题的关键在于如何找出一条路径满足换乘次数最少,且能输出换乘地铁的方式:
我们先解决后半个问题,如何输出地铁换乘的方式呢?由于每两个地铁站之间唯一确定一条地铁线路,因此只需建立一个 ( s t a t i o n 1 , s t a t i o n 2 ) = l i n e (station1,station2) = line (station1,station2)=line的关系映射就可以了,这里我们采用哈希表建立,记录每站的地铁选择,相同线路只输出一次,到了换乘站再输出下一行(路径压缩)
接着我们解决前半个问题,如何使得换乘次数最少?此时,我们需统计所有的最短路径(DFS),找出一条换乘次数最少的即可,保存并输出
#include
using namespace std;
int a[105][105];
int b[105];
struct node{
int v;
};
node temp;
vector<node> G[10005];
int dp[10005];
bool vis[10005];
map<int,int> mp;
int S,T;
vector<int> ans;
vector<int> res;
vector<int> pre[10005];
int maxn = 105;
void dijkstra(int u){
memset(vis,0,sizeof(vis));
memset(dp,0x3f,sizeof(dp));
maxn = 105;
for(int i=0;i<10000;i++){
pre[i].clear();
}
dp[u] = 0;
priority_queue<pair<int,int> > q;
q.push(make_pair(-dp[u],u));
while(!q.empty()){
pair<int,int> f = q.top();
q.pop();
int u = f.second;
if(vis[u]){
continue;
}
vis[u] = true;
for(int i=0;i<G[u].size();i++){
int v = G[u][i].v;
if(!vis[v]){
if(dp[u] + 1 < dp[v]){
dp[v] = dp[u] + 1;
pre[v].clear();
pre[v].push_back(u);
q.push(make_pair(-dp[v],v));
}else if(dp[u] + 1 == dp[v]){
pre[v].push_back(u);
}
}
}
}
}
void dfs(int T){
if(T == S){
set<int> s;
res.push_back(T);
for(int i=0;i<res.size()-1;i++){
int u = res[i];
int v = res[i+1];
int t = u*10000 + v;
s.insert(mp[t]);
}
if(s.size()<maxn){
maxn = s.size();
ans = res;
}
res.pop_back();
return;
}
for(int i=0;i<pre[T].size();i++){
int v = pre[T][i];
res.push_back(T);
dfs(v);
res.pop_back();
}
}
int main(){
int N;
cin >> N;
for(int i=1;i<=N;i++){
cin >> b[i];
for(int j=1;j<=b[i];j++){
cin >> a[i][j];
}
}
for(int i=1;i<=N;i++){
for(int j=1;j<b[i];j++){
int u = a[i][j];
temp.v = a[i][j+1];
int t = a[i][j]*10000 + a[i][j+1];
mp[t] = i;
G[u].push_back(temp);
u = a[i][j+1];
temp.v = a[i][j];
t = a[i][j+1]*10000 + a[i][j];
mp[t] = i;
G[u].push_back(temp);
}
}
int K;
cin >> K;
for(int i=1;i<=K;i++){
cin >> S >> T;
dijkstra(S);
printf("%d\n",dp[T]);
ans.clear();
res.clear();
dfs(T);
reverse(ans.begin(),ans.end());
int t = ans[0]*10000 + ans[1];
int f = mp[t];
int start = ans[0];
for(int i=0;i<ans.size()-1;i++){
t = ans[i]*10000 + ans[i+1];
if(mp[t] == f){
continue;
}else{
printf("Take Line#%d from %04d to %04d.\n",f,start,ans[i]);
f = mp[t];
start = ans[i];
}
}
printf("Take Line#%d from %04d to %04d.\n",f,start,T);
}
return 0;
}
算法标签: 模拟
#include
using namespace std;
int count(int n){
int cnt = 0;
while(n){
cnt++;
n/=10;
}
return cnt;
}
int main(){
int N;
scanf("%d",&N);
for(int i=0;i<N;i++){
int t;
scanf("%d",&t);
int cnt = count(t);
cnt/=2;
int mod = (int)pow(10,cnt);
int num1 = t/mod;
int num2 = t%mod;
if(num2 == 0){
printf("No\n");
}else{
int q = (t)/(num1*num2);
if(q*num1*num2 == t){
printf("Yes\n");
}else{
printf("No\n");
}
}
}
return 0;
}
算法标签: 链表 + 模拟
#include
using namespace std;
map<int,int>mp1;
map<int,int> mp2;
struct node{
int s1;
int val;
};
node n[100005];
int main(){
int N,K;
int start;
cin >> start >> N >> K;
for(int i=0;i<N;i++){
int pos,next;
int v;
cin >> pos >> v >>next;
mp1[pos] = next;
mp2[pos] = v;
}
int cnt = 0;
int start1 = start;
while(start1!=-1){
if(mp2[start1]<0){
n[cnt].s1 = start1;
n[cnt++].val = mp2[start1];
}
start1 = mp1[start1];
}
start1 = start;
while(start1!=-1){
if(mp2[start1]>=0 && mp2[start1]<=K){
n[cnt].s1 = start1;
n[cnt++].val = mp2[start1];
}
start1 = mp1[start1];
}
start1 = start;
while(start1!=-1){
if(mp2[start1]>K){
n[cnt].s1 = start1;
n[cnt++].val = mp2[start1];
}
start1 = mp1[start1];
}
for(int i=0;i<cnt;i++){
if(i==cnt-1){
printf("%05d %d %d\n",n[i].s1,n[i].val,-1);
}else{
printf("%05d %d %05d\n",n[i].s1,n[i].val,n[i+1].s1);
}
}
return 0;
}
算法标签: 顶点覆盖
注意点:
根据题意,顶点覆盖是指有这么一个点集,从点集中的点出发能够访问(覆盖)图中所有的边,也就是说点覆盖边,因此根据定义,直接判断边是否被完全标记即可
#include
using namespace std;
int N,M;
int K;
struct node{
int u;
int v;
};
node edge[10005];
int main(){
scanf("%d%d",&N,&M);
for(int i=0;i<M;i++){
scanf("%d%d",&edge[i].u,&edge[i].v);
}
scanf("%d",&K);
for(int i=0;i<K;i++){
int L;
set<int> s;
scanf("%d",&L);
for(int j=0;j<L;j++){
int t;
scanf("%d",&t);
s.insert(t);
}
bool f = true;
for(int j=0;j<M;j++){
if(s.find(edge[j].u)!=s.end()){
continue;
}
if(s.find(edge[j].v)!=s.end()){
continue;
}
f = false;
break;
}
if(f){
printf("Yes\n");
}else{
printf("No\n");
}
}
return 0;
}
算法标签: 树,二叉树 + DFS
注意点:
1,红黑树的外部结点是值为NULL的黑结点,该结点必须考虑进入黑高度的计算之中,否则会导致判断错误[测试点3]
2.整体思路:建树+DFS遍历
(1) The root is black.
(2) Every leaf (NULL) is black.
(3) If a node is red, then both its children are black.
(4) For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.
#include
using namespace std;
int K;
bool flag;
int blackheight;
struct node{
int data;
bool red;
node* lchild;
node* rchild;
};
node* newnode(int v,int red){
node* Node = new node;
Node->data = v;
Node->red = red;
Node->lchild = NULL;
Node->rchild = NULL;
return Node;
}
void insert(node* &root,int x,bool red){
if(root == NULL){
root = newnode(x,red);
return;
}
if(x<root->data){
insert(root->lchild,x,red);
}else{
insert(root->rchild,x,red);
}
}
void dfs(node* root,int depth,int blacknum){
if(depth == 0){
if(root->red == 1){
flag = false;
return;
}
}
if(root == NULL){
if(blacknum+1!= blackheight){
flag = false;
}
return;
}
if(root->red == 0){
dfs(root->lchild,depth+1,blacknum+1);
dfs(root->rchild,depth+1,blacknum+1);
}else{
if(root->lchild){
if(root->lchild->red == 0){
dfs(root->lchild,depth+1,blacknum);
}else{
flag = false;
return;
}
}else{
dfs(root->lchild,depth+1,blacknum);
}
if(root->rchild){
if(root->rchild->red == 0){
dfs(root->rchild,depth+1,blacknum);
}else{
flag = false;
return;
}
}else{
dfs(root->rchild,depth+1,blacknum);
}
}
}
int main(){
scanf("%d",&K);
for(int i=0;i<K;i++){
int N;
scanf("%d",&N);
node* root = NULL;
for(int j=0;j<N;j++){
int u;
scanf("%d",&u);
bool red = 0;
if(u<0){
red = 1;
}
u = abs(u);
insert(root,u,red);
}
flag = true;
blackheight = 0;
node* temp = root;
while(temp){
if(temp->red == 0){
blackheight++;
}
temp = temp->lchild;
}
blackheight++;
dfs(root,0,0);
if(flag){
printf("Yes\n");
}else{
printf("No\n");
}
}
return 0;
}
算法标签: 模拟 + 高精
#include
using namespace std;
int a[1050];
int b[1050];
int c[1050];
bool isright(int c[],int len){
bool flag = true;
for(int i=0;i<len/2;i++){
if(c[i] == c[len-i-1]){
continue;
}else{
flag = false;
break;
}
}
return flag;
}
int main(){
string s;
cin >> s;
int len = s.size();
for(int i=0;i<len;i++){
a[len-i-1] = s[i] -'0';
b[i] = s[i] -'0';
}
if(isright(a,len)){
for(int i=len-1;i>=0;i--){
cout << a[i];
}
cout << " is a palindromic number.";
return 0;
}
int lena = len,lenb = len;
for(int j=0;j<10;j++){
memset(c,0,sizeof(c));
int jw = 0;
for(int i=0;i<len;i++){
c[i] = jw + a[i] + b[i];
jw = c[i] / 10;
c[i] = c[i] % 10;
}
if(jw){
c[len] = jw;
len++;
}
//print
for(int i=lena-1;i>=0;i--){
cout << a[i];
}
cout << " + ";
for(int i=lenb-1;i>=0;i--){
cout << b[i];
}
cout << " = ";
for(int i=len-1;i>=0;i--){
cout << c[i];
}
cout << endl;
//
bool f = isright(c,len);
if(f){
for(int i=len-1;i>=0;i--){
cout << c[i];
}
cout << " is a palindromic number.";
return 0;
}else{
for(int i=0;i<len;i++){
a[i] = c[i];
b[i] = c[len-1-i];
}
lena = len;
lenb = len;
}
}
cout << "Not found in 10 iterations.";
return 0;
}
算法标签: 排序 + 结构体
#include
using namespace std;
typedef struct student{
string s;
int score1;
int score2;
int score3;
int score4;
}stu;
vector<stu> v;
bool cmp(stu s1,stu s2){
if(s1.score4!=s2.score4){
return s1.score4>s2.score4;
}else{
return s1.s < s2.s;
}
}
map<string,int> A;
map<string,int> B;
map<string,int> C;
int main(){
int P,M,N;
cin >> P >> M >> N;
for(int i=0;i<P;i++){
string s;
int score;
cin >> s >> score;
A[s] = score;
B[s] = -1;
C[s] = -1;
}
for(int i=0;i<M;i++){
string s;
int score;
cin >> s >> score;
B[s] = score;
}
for(int i=0;i<N;i++){
string s;
int score;
cin >> s >> score;
C[s] = score;
}
for(auto it = A.begin();it!=A.end();it++){
stu student;
student.s = it->first;
student.score1 = it->second;
student.score2 = B[it->first];
student.score3 = C[it->first];
double f;
if(student.score2!=-1 && student.score3!=-1){
f = student.score2 * 0.4 + student.score3 * 0.6;
}else if(student.score2!=-1){
f = student.score2 * 0.4;
}else if(student.score3!=-1){
f = student.score3;
}else{
f = 0;
}
int f0 = (round)(f);
if(student.score3>f0){
student.score4 = student.score3;
}else{
student.score4 = f0;
}
v.push_back(student);
}
sort(v.begin(),v.end(),cmp);
for(int i=0;i<v.size();i++){
if(v[i].score1>=200 && v[i].score4>=60){
cout << v[i].s << " " << v[i].score1 << " " << v[i].score2 << " " << v[i].score3
<< " " << round(v[i].score4) << endl;
}
}
return 0;
}
算法标签: 树,二叉树 + DFS
注意点:
先根据前序遍历和后序遍历建树,然后后序遍历访问树上结点
#include
using namespace std;
const int maxn = 5e4+5;
int N;
int pre[maxn];
int in[maxn];
struct node{
int data;
node* lchild;
node* rchild;
};
node* newnode(int v){
node* Node = new node;
Node->data = v;
Node->lchild = NULL;
Node->rchild = NULL;
return Node;
}
node* Create(int preL,int preR,int inL,int inR){
if(preL>preR){
return NULL;
}
node* root = newnode(pre[preL]);
int k;
for(int i=inL;i<=inR;i++){
if(pre[preL] == in[i]){
k = i;
break;
}
}
int numleft = k-inL;
root->lchild = Create(preL+1,preL+numleft,inL,inL+numleft-1);
root->rchild = Create(preL+numleft+1,preR,inL+numleft+1,inR);
return root;
}
void PostOrder(node* root){
while(1){
while(root->lchild){
root = root->lchild;
}
if(root->rchild){
root = root->rchild;
}else{
break;
}
}
printf("%d\n",root->data);
}
int main(){
scanf("%d",&N);
for(int i=1;i<=N;i++){
scanf("%d",&pre[i]);
}
for(int i=1;i<=N;i++){
scanf("%d",&in[i]);
}
node* root = Create(1,N,1,N);
PostOrder(root);
return 0;
}
算法标签: 图论 + BFS
注意点:
一道好题!这道题目包含着许多细节:
1.可能出现+0000与-0000元素,-代表女生,+代表男生
2.枚举A的朋友B,再枚举B的朋友C(注意此时不能为A)
#include
using namespace std;
vector<int> G[10005];
int hashT[10005];
struct node{
int friend1;
int friend2;
};
node out[10005];
bool cmp(node n1,node n2){
if(n1.friend1!=n2.friend1){
return n1.friend1 < n2.friend1;
}else{
return n1.friend2 < n2.friend2;
}
}
int main(){
int N,M;
scanf("%d%d",&N,&M);
for(int i=0;i<M;i++){
string u,v;
cin >> u >> v;
if(u[0]=='-'){
hashT[abs(stoi(u))] = 2;
}else{
hashT[abs(stoi(u))] = 1;
}
if(v[0]=='-'){
hashT[abs(stoi(v))] = 2;
}else{
hashT[abs(stoi(v))] = 1;
}
G[abs(stoi(u))].push_back(abs(stoi(v)));
G[abs(stoi(v))].push_back(abs(stoi(u)));
}
int K;
scanf("%d",&K);
for(int i=0;i<K;i++){
int cnt = 0;
int u1,u2;
string s1,s2;
int flag = 0;
cin >> s1 >> s2;
if(s1[0]!='-' && s2[0]=='-'){
flag = 1;
}else if(s1[0]=='-' && s2[0]!='-'){
flag = 2;
}else if(s1[0]!='-' && s2[0]!='-'){
flag = 3;
}else{
flag = 4;
}
u1 = abs(stoi(s1));
u2 = abs(stoi(s2));
if(flag == 1){
for(int j=0;j<G[u1].size();j++){
int v = G[u1][j];
if(hashT[v] == 1 && v!=u2){
for(int k=0;k<G[v].size();k++){
int w = G[v][k];
if(hashT[w] == 2 && w!=u2){
bool f = false;
for(int p=0;p<G[w].size();p++){
if(G[w][p] == u2){
f = true;
break;
}
}
if(f){
out[cnt].friend1 = v;
out[cnt].friend2 = w;
cnt++;
}
}
}
}
}
}else if(flag == 2){
for(int j=0;j<G[u1].size();j++){
int v = G[u1][j];
if(hashT[v] == 2 && v!=u2){
for(int k=0;k<G[v].size();k++){
int w = G[v][k];
if(hashT[w] == 1 && w!=u2){
bool f = false;
for(int p=0;p<G[w].size();p++){
if(G[w][p] == u2){
f = true;
break;
}
}
if(f){
out[cnt].friend1 = v;
out[cnt].friend2 = w;
cnt++;
}
}
}
}
}
}else if(flag == 3){
for(int j=0;j<G[u1].size();j++){
int v = G[u1][j];
if(hashT[v] == 1 && v!=u2){
for(int k=0;k<G[v].size();k++){
int w = G[v][k];
if(hashT[w] == 1 && w!=u2 && w!=u1){
bool f = false;
for(int p=0;p<G[w].size();p++){
if(G[w][p] == u2){
f = true;
break;
}
}
if(f){
out[cnt].friend1 = v;
out[cnt].friend2 = w;
cnt++;
}
}
}
}
}
}else{
for(int j=0;j<G[u1].size();j++){
int v = G[u1][j];
if(hashT[v] == 2 && v!=u2){
for(int k=0;k<G[v].size();k++){
int w = G[v][k];
if(hashT[w] == 2 && w!=u2 && w!=u1){
bool f = false;
for(int p=0;p<G[w].size();p++){
if(G[w][p] == u2){
f = true;
break;
}
}
if(f){
out[cnt].friend1 = v;
out[cnt].friend2 = w;
cnt++;
}
}
}
}
}
}
sort(out,out+cnt,cmp);
printf("%d\n",cnt);
for(int i=0;i<cnt;i++){
printf("%04d %04d\n",out[i].friend1,out[i].friend2);
}
}
return 0;
}
算法标签: 模拟
注意点: 这是一道找规律的题目,我们需找出图中数字变化的规律,不难发现,每一次都是对前一字符串的压缩,因此反复迭代模拟即可
#include
using namespace std;
const int maxn = 1e2+5;
string str[maxn];
int main(){
int d,N;
cin >> d >> N;
str[0] += (d+'0');
for(int i=1;i<N;i++){
char start = str[i-1][0];
int count = 0;
for(int j=0;j<str[i-1].size();j++){
if(str[i-1][j]==start){
count++;
}else{
str[i] += start;
str[i] += (count+'0');
count = 1;
start = str[i-1][j];
}
}
str[i] += start;
str[i] += (count+'0');
}
cout << str[N-1] << endl;
return 0;
}
算法标签: 排序
#include
using namespace std;
const int maxn = 1e5+5;
struct node{
string name;
int res;
int num;
};
unordered_map<string,double> Tscore;
unordered_map<string,int> Man;
bool cmp(node n1,node n2){
if(n1.res!=n2.res){
return n1.res>n2.res;
}else if(n1.num!=n2.num){
return n1.num<n2.num;
}else{
return n1.name < n2.name;
}
}
int main(){
int N;
cin.tie(0);
cout.tie(0);
cin >> N;
for(int i=0;i<N;i++){
string number;
cin >> number;
int score;
cin >> score;
double r;
string sname;
cin >> sname;
for(int j=0;j<sname.size();j++){
sname[j] = tolower(sname[j]);
}
if(number[0]=='B'){
r = score*1.0/1.5;
}else if(number[0]=='A'){
r = score *1.0;
}else if(number[0]=='T'){
r = score *1.5;
}
Tscore[sname] += r;
Man[sname] ++;
}
vector<node> ans;
int ch = 0;
for(auto it =Tscore.begin();it!=Tscore.end();it++){
ans.push_back(node{it->first,(int)(it->second),Man[it->first]});
}
sort(ans.begin(),ans.end(),cmp);
int rank = 1;
double snum=0.0;
cout << ans.size() << endl;
for(int i=0;i<ans.size();i++){
if(snum!=ans[i].res){
snum = ans[i].res;
rank = i+1;
}
cout << rank << " " << ans[i].name << " " << ans[i].res << " " << ans[i].num << endl;
}
return 0;
}
算法标签: 最大团
注意点: 最大团问题,是指在一个无向图中找出一个点数最多的完全图。通俗一点讲,就是找到一个点的集合,使得这些点能够覆盖图中所有的边,因此,我们可以采用枚举的策略,枚举每个点,并标记由该点连通的边,枚举结束后,若所有边全部被覆盖,则这些顶点组成的集合是一个最大团,否则就不是
#include
using namespace std;
int G[205][205];
int a[205];
bool hashT[205];
int main(){
int Nv,Ne;
scanf("%d%d",&Nv,&Ne);
for(int i=1;i<=Ne;i++){
int u,v;
scanf("%d%d",&u,&v);
G[u][v] = G[v][u] = 1;
}
int M;
scanf("%d",&M);
for(int i=1;i<=M;i++){
memset(hashT,0,sizeof(hashT));
int K;
scanf("%d",&K);
for(int j=1;j<=K;j++){
scanf("%d",&a[j]);
hashT[a[j]] = true;
}
bool isfriend = true;
for(int j=1;j<=K-1;j++){
for(int k=j+1;k<=K;k++){
if(G[a[j]][a[k]]){
continue;
}else{
isfriend = false;
break;
}
}
}
if(!isfriend){
printf("Not a Clique\n");
}else{
bool isall = true;
for(int j=1;j<=Nv;j++){
if(!hashT[j]){
bool exist = true;
for(int k=1;k<=K;k++){
if(G[j][a[k]]){
continue;
}else{
exist = false;
break;
}
}
if(exist){
isall = false;
break;
}
}
}
if(isall){
printf("Yes\n");
}else{
printf("Not Maximal\n");
}
}
}
return 0;
}
算法标签: 树,二叉树 + LCA
注意点: LCA模板题,考虑到本题的样例数据规模较小,因此,我们采用DFS回溯法求公共祖先,也即从根结点出发,DFS遍历出两条路径,而路径的最大公共前缀末尾即为最小公共祖先的结点,输出即可,若查询不到该结点,则输出error。
当然,求解最小公共祖先结点的正解是倍增LCA算法或Tarjan算法,该算法在数据结构专题系列-LCA中给出
#include
using namespace std;
int M,N;
int pre[10005];
int in[10005];
int path1[10005];
int path2[10005];
int cnt1 = 0;
int cnt2 = 0;
struct node{
int data;
node* lchild;
node* rchild;
};
node* newnode(int v){
node* Node = new node;
Node->data = v;
Node->lchild = NULL;
Node->rchild = NULL;
return Node;
}
node* Create(int preL,int preR,int inL,int inR){
if(preL>preR){
return NULL;
}
node* root = newnode(pre[preL]);
int k;
for(int i=inL;i<=inR;i++){
if(pre[preL] == in[i]){
k = i;
break;
}
}
int numleft = k-inL;
root->lchild = Create(preL+1,preL+numleft,inL,inL+numleft-1);
root->rchild = Create(preL+numleft+1,preR,inL+numleft+1,inR);
return root;
}
int search1(node* root,int v){
if(root == NULL){
return 0;
}
if(root->data == v){
path1[cnt1++] = v;
return 1;
}else if(v<root->data){
path1[cnt1++] = root->data;
search1(root->lchild,v);
}else{
path1[cnt1++] = root->data;
search1(root->rchild,v);
}
}
int search2(node* root,int v){
if(root == NULL){
return 0;
}
if(root->data == v){
path2[cnt2++] = v;
return 1;
}else if(v<root->data){
path2[cnt2++] = root->data;
search2(root->lchild,v);
}else{
path2[cnt2++] = root->data;
search2(root->rchild,v);
}
}
int main(){
scanf("%d%d",&M,&N);
node* root = NULL;
for(int i=1;i<=N;i++){
scanf("%d",&pre[i]);
in[i] = pre[i];
}
sort(in+1,in+1+N);
root = Create(1,N,1,N);
for(int i=1;i<=M;i++){
int U,V;
scanf("%d%d",&U,&V);
cnt1 = 0;
cnt2 = 0;
int f1 = search1(root,U);
int f2 = search2(root,V);
if(!f1 && !f2){
printf("ERROR: %d and %d are not found.\n",U,V);
}else if(!f1 && f2){
printf("ERROR: %d is not found.\n",U);
}else if(f1 && !f2){
printf("ERROR: %d is not found.\n",V);
}else{
int k = -1;
bool f = false;
for(int i=0;i<cnt1 && i<cnt2;i++){
if(path1[i] == path2[i]){
f = true;
continue;
}else{
k = i-1;
break;
}
}
if(f && k==-1){
k = min(cnt1,cnt2)-1;
}
if(path1[k] == U){
printf("%d is an ancestor of %d.\n",U,V);
}else if(path1[k] == V){
printf("%d is an ancestor of %d.\n",V,U);
}else{
printf("LCA of %d and %d is %d.\n",U,V,path1[k]);
}
}
}
return 0;
}
算法标签: 哈希
#include
using namespace std;
bool hashT[100005];
int main(){
int N;
scanf("%d",&N);
for(int i=0;i<N;i++){
int t;
scanf("%d",&t);
if(t>100000 || t<=0){
continue;
}else{
hashT[t] = true;
}
}
int res=N+1;
for(int i=1;i<=N;i++){
if(!hashT[i]){
res = i;
break;
}
}
printf("%d\n",res);
return 0;
}
算法标签: 哈希
注意点: 本题考察对哈希冲突算法的理解,题目中给出的实现方法是开放定址法,哈希函数为除模取余法,冲突解决的方案为平方试探法(单向),模拟哈希表的处理过程即可
#include
using namespace std;
const int maxn = 1e4+50;
bool p[maxn]={1,1,0};
int a[maxn];
int hashT[maxn];
int msize;
int N,M;
int Tsize;
void init(){
for(int i=2;i<maxn;i++){
if(!p[i]){
for(int j=2*i;j<maxn;j+=i){
p[j] = 1;
}
}
}
}
int main(){
init();
scanf("%d%d%d",&msize,&N,&M);
for(int i=0;i<N;i++){
scanf("%d",&a[i]);
}
if(!p[msize]){
Tsize = msize;
}else{
for(int i=msize+1;;i++){
if(!p[i]){
Tsize = i;
break;
}
}
}
for(int i=0;i<N;i++){
int key = a[i] % Tsize;
if(!hashT[key]){
hashT[key] = a[i];
}else{
bool f = false;
for(int step=1;step<Tsize;step++){
int k = (a[i]+step*step)%Tsize;
if(!hashT[k]){
hashT[k] = a[i];
f = true;
break;
}
}
if(!f){
printf("%d cannot be inserted.\n",a[i]);
}
}
}
int sum = 0;
for(int i=0;i<M;i++){
int t;
scanf("%d",&t);
int key = t % Tsize;
sum++;
if(hashT[key] == t || hashT[key] == 0){
continue;
}else{
bool f = false;
for(int step=1;step<Tsize;step++){
int k = (t+step*step)%Tsize;
sum++;
if(hashT[k]==t || hashT[k] == 0){
f = true;
break;
}
}
if(!f){
sum++;
}
}
}
double res = (sum*1.0)/(M*1.0);
printf("%.1lf\n",res);
return 0;
}
算法标签: 图论 + 拓扑排序
注意点: 拓扑排序的验证题,本题要求验证一串序列是否为拓扑排序,验证的过程如下:根据题目输入的序列顺序,依次抹去对应的结点及其出边,删除结点时需检验结点的入度为0,否则不是拓扑序列,若所有的结点都能正常删除,记录此次输入是拓扑序列
#include
using namespace std;
int N,M,K;
int a[1005];
int b[1005];
vector<int> G[1005];
int indegree[1005];
vector<int> ans;
void init(){
for(int i=1;i<=N;i++){
a[i] = indegree[i];
}
}
int main(){
scanf("%d%d",&N,&M);
for(int i=1;i<=M;i++){
int u,v;
scanf("%d%d",&u,&v);
G[u].push_back(v);
indegree[v]++;
}
scanf("%d",&K);
for(int i=0;i<K;i++){
init();
for(int j=1;j<=N;j++){
scanf("%d",&b[j]);
}
for(int j=1;j<=N;j++){
if(!a[b[j]]){
for(int k=0;k<G[b[j]].size();k++){
int v = G[b[j]][k];
a[v]--;
}
}else{
ans.push_back(i);
break;
}
}
}
for(int i=0;i<ans.size();i++){
if(i==0){
printf("%d",ans[i]);
}else{
printf(" %d",ans[i]);
}
}
return 0;
}
算法标签: 堆
注意点: 本题考察堆的概念,堆是指一个有序的二叉树,根结点与左右子树之间都维持着某种顺序,因此,本题首先要判断输入的序列是否为堆,通过DFS遍历即可得出;若是堆,还需判断是大根堆还是小根堆,我们可直接判断根结点的顺序,其余的结点必定是满足这个顺序的
#include
using namespace std;
int M,N;
int a[2005];
int path[2005];
int cnt = 0;
void dfs(int root){
if(root>N){
return;
}
dfs(root*2);
dfs(root*2+1);
if(!cnt){
printf("%d",a[root]);
}else{
printf(" %d",a[root]);
}
cnt++;
}
int isheap(int root){
bool f = false;
if(a[root*2]>a[root] && a[root*2+1]>a[root]){
f = true;
}else if(a[root*2]<a[root] && a[root*2+1]<a[root]){
f = false;
}else{
return -1;
}
int i = root;
int j = 2*i;
while(j<=N){
if(j+1<=N){
if(a[j]>a[i] && a[j+1]>a[i] && f){
i++;
j = i*2;
}else if(a[j]<a[i] && a[j+1]<a[i] && !f){
i++;
j = i*2;
}else{
return -1;
}
}else if(j<=N){
if(a[j]>a[i] && f){
i++;
j = i*2;
}else if(a[j]<a[i] && !f){
i++;
j = i*2;
}else{
return -1;
}
}
}
if(f){
return 0;
}else{
return 1;
}
}
int main(){
scanf("%d",&M);
scanf("%d",&N);
for(int p=0;p<M;p++){
for(int i=1;i<=N;i++){
scanf("%d",&a[i]);
}
int res = isheap(1);
if(res == -1){
printf("Not Heap\n");
}else if(res == 0 ){
printf("Min Heap\n");
}else{
printf("Max Heap\n");
}
cnt = 0;
dfs(1);
printf("\n");
}
return 0;
}
算法标签: 模拟
#include
using namespace std;
const int maxn = 1e2+5;
int a[maxn];
int c[maxn];
int main(){
int N;
cin >> N;
for(int i=1;i<=N;i++){
cin >> a[i];
}
for(int i=1;i<=N-1;i++){
for(int j=i+1;j<=N;j++){
for(int k=1;k<=N;k++){
if(k==i || k==j){
c[k] = -1;
}else{
c[k] = 1;
}
}
vector<int> l;
for(int k=1;k<=N;k++){
if(a[k]<0 && abs(a[k])!=i && abs(a[k])!=j){
l.push_back(k);
}else if(a[k]>0 && (a[k]==i || a[k]==j)){
l.push_back(k);
}
}
if(l.size()==2 && (c[l[0]]+c[l[1]]==0)){
cout << i << " " << j << endl;
return 0;
}
}
}
cout << "No Solution" << endl;
return 0;
}
算法标签: 模拟
#include
using namespace std;
const int maxn = 1e5+5;
int a[maxn];
int c[maxn];
unordered_map<int,vector<int>> good;
int main(){
int N,M;
cin.tie(0);
cout.tie(0);
cin >> N >> M;
for(int i=0;i<N;i++){
int g1,g2;
cin >> g1 >> g2;
good[g1].push_back(g2);
good[g2].push_back(g1);
}
for(int i=0;i<M;i++){
int K;
cin >> K;
memset(a,0,sizeof(a));
bool flag = false;
for(int j=0;j<K;j++){
cin >> c[j];
a[c[j]] = 1;
}
for(int j=0;j<K;j++){
for(int k=0;k<good[c[j]].size();k++){
if(!a[good[c[j]][k]]){
continue;
}else{
flag = true;
break;
}
}
if(flag){
break;
}
}
if(flag){
cout << "No" << endl;
}else{
cout << "Yes" << endl;
}
}
return 0;
}
算法标签: 图论 + TSP
注意点: TSP问题,又称为旅行商问题,是指一个旅行商需要游历所有的城市一遍并返回起点。本题需要判断输入的序列是否为TSP路径
首先,我们先检查输入的序列,起点和终点是否相同,若不相同,肯定不是TSP路径,接着,我们遍历整个数组,用哈希表统计每个元素的出现情况,若不能覆盖所有顶点,也不是TSP路径;进一步的,我们考察每个路径相邻的顶点对,若两点相连的路径不是图中的连通路,那么也不是TSP路径。
当路径是TSP路径时,我们考察其为简单路径还是复杂路径,简单路径意味着顶点的数量为N+1,复杂路径意味着顶点数要比N+1多
#include
using namespace std;
int N,M;
int K;
int G[205][205];
int hashT[205];
int a[10005];
int main(){
scanf("%d%d",&N,&M);
for(int i=0;i<M;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
G[u][v] = G[v][u] = w;
}
scanf("%d",&K);
int shortdis = INT_MAX;
int shortnum;
for(int i=1;i<=K;i++){
memset(hashT,0,sizeof(hashT));
int n;
scanf("%d",&n);
for(int j=0;j<n;j++){
scanf("%d",&a[j]);
hashT[a[j]]++;
}
bool iscycle = true;
int total = 0;
for(int j=0;j<n-1;j++){
int u = a[j];
int v = a[j+1];
if(G[u][v]>0){
total += G[u][v];
}else{
iscycle = false;
total = -1;
break;
}
}
for(int j=1;j<=N;j++){
if(hashT[j]){
continue;
}else{
iscycle = false;
break;
}
}
if(a[0]!=a[n-1]){
iscycle = false;
}
if(!iscycle){
if(total == -1){
printf("Path %d: NA (Not a TS cycle)\n",i);
}else{
printf("Path %d: %d (Not a TS cycle)\n",i,total);
}
}else{
if(n == N+1){
printf("Path %d: %d (TS simple cycle)\n",i,total);
}else{
printf("Path %d: %d (TS cycle)\n",i,total);
}
if(shortdis > total){
shortdis = total;
shortnum = i;
}
}
}
printf("Shortest Dist(%d) = %d\n",shortnum,shortdis);
return 0;
}