Linux jprobe的使用和原理

文章目录

  • 前言
  • 一、demo
    • 1.1 demo演示
    • 1.2 struct jprobe
  • 二、jprobe 原理
    • 2.1 原理简介
    • 1.2 原理详解
  • 三、源码解析
    • 3.1 struct jprobe
    • 3.2 register_jprobe
    • 3.3 kprobe_handler
    • 3.4 setjmp_pre_handler
    • 3.5 jprobe_return
    • 3.6 longjmp_break_handler
  • 四、Deprecated Features
  • 五、使用 perf-probe 获取函数参数
  • 总结
  • 参考资料

前言

现在介绍jprobe。kprobe提供三种探测手段:kprobe、kretprobe和jprobe,其中kretprobe和jprobe基于kprobe实现,分别应用于不同探测场景中。

kretprobe基于kprobe实现,用于获取被探测函数的返回值。
jprobe基于kprobe实现,它用于获取被探测函数的入参值。

高版本的内核已经不支持 jprobe,我使用的是centos 7进行代码测试和 3.10.0 内核源码分析。

一、demo

1.1 demo演示

仍然拿_do_fork() 举例,_do_fork() 是Linux内核用来创建新任务的函数接口。

由于jprobe使用来获取探测函数的入参值,主要看一下_do_fork函数的参数:

long _do_fork(unsigned long clone_flags,
	      unsigned long stack_start,
	      unsigned long stack_size,
	      int __user *parent_tidptr,
	      int __user *child_tidptr,
	      unsigned long tls)
/*
 * Here's a sample kernel module showing the use of jprobes to dump
 * the arguments of _do_fork().
 *
 * For more information on theory of operation of jprobes, see
 * Documentation/kprobes.txt
 *
 * Build and insert the kernel module as done in the kprobe example.
 * You will see the trace data in /var/log/messages and on the
 * console whenever _do_fork() is invoked to create a new process.
 * (Some messages may be suppressed if syslogd is configured to
 * eliminate duplicate messages.)
 */

#include 
#include 
#include 

/*
 * Jumper probe for _do_fork.
 * Mirror principle enables access to arguments of the probed routine
 * from the probe handler.
 */

/* Proxy routine having the same arguments as actual _do_fork() routine */
static long j_do_fork(unsigned long clone_flags, unsigned long stack_start,
	      unsigned long stack_size, int __user *parent_tidptr,
	      int __user *child_tidptr, unsigned long tls)
{
	pr_info("jprobe: clone_flags = 0x%lx, stack_start = 0x%lx "
		"stack_size = 0x%lx\n", clone_flags, stack_start, stack_size);

	/* Always end with a call to jprobe_return(). */
	jprobe_return();
	return 0;
}

static struct jprobe my_jprobe = {
	.entry			= j_do_fork,
	.kp = {
		.symbol_name	= "_do_fork",
	},
};

static int __init jprobe_init(void)
{
	int ret;

	ret = register_jprobe(&my_jprobe);
	if (ret < 0) {
		pr_err("register_jprobe failed, returned %d\n", ret);
		return -1;
	}
	pr_info("Planted jprobe at %p, handler addr %p\n",
	       my_jprobe.kp.addr, my_jprobe.entry);
	return 0;
}

static void __exit jprobe_exit(void)
{
	unregister_jprobe(&my_jprobe);
	pr_info("jprobe at %p unregistered\n", my_jprobe.kp.addr);
}

module_init(jprobe_init)
module_exit(jprobe_exit)
MODULE_LICENSE("GPL");

结果:
Linux jprobe的使用和原理_第1张图片
(1)jprobe处理程序例程 j_do_fork 要和 待探测的内核函数 _do_fork()例程具有相同类型的参数和返回值类型。
(2)jprobe处理程序例程 j_do_fork执行完毕以后,必须调用jprobe_return函数结尾。

1.2 struct jprobe

/*
 * Special probe type that uses setjmp-longjmp type tricks to resume
 * execution at a specified entry with a matching prototype corresponding
 * to the probed function - a trick to enable arguments to become
 * accessible seamlessly by probe handling logic.
 * Note:
 * Because of the way compilers allocate stack space for local variables
 * etc upfront, regardless of sub-scopes within a function, this mirroring
 * principle currently works only for probes placed on function entry points.
 */
struct jprobe {
	struct kprobe kp;
	void *entry;	/* probe handling code to jump to */
};

/* For backward compatibility with old code using JPROBE_ENTRY() */
#define JPROBE_ENTRY(handler)	(handler)

由于jprobe基于kprobe实现的,可以看到struct jprobe结构体中内嵌了struct kprobe结构体。

static struct jprobe my_jprobe = {
	.entry			= j_do_fork,
	.kp = {
		.symbol_name	= "_do_fork",
	},
};
struct kprobe {
	......
	/* Allow user to indicate symbol name of the probe point */
	const char *symbol_name;
	......
};

二、jprobe 原理

2.1 原理简介

jprobe是使用放置在函数入口点上的kprobe实现的,它采用简单的镜像原理,允许无缝访问被探测函数的参数。jprobe处理程序例程应该与被探测的函数具有相同的签名(参数列表和返回类型),并且必须始终以调用Kprobes函数jprobe_return()结束。

当探针(probe)被击中时,Kprobes会复制保存的寄存器和堆栈的一部分,然后,Kprobes将保存的指令指针指向jprobe的处理程序例程,并从陷阱(trap)中返回。因此,控制权传递给处理程序,处理程序与被探测函数具有相同的寄存器和堆栈内容。完成后,处理程序调用jprobe_return(),再次捕获以恢复原始堆栈内容和处理器状态,并切换到被探测的函数。

按照惯例,被调用者拥有自己的参数,因此gcc可能会生成意外修改堆栈中该部分的代码。这就是Kprobes保存堆栈副本并在jprobe处理程序运行后恢复堆栈的原因。最多复制MAX_STACK_SIZE字节。

注意,被探测函数的参数可以在堆栈或寄存器中传递。无论哪种情况,只要处理程序的原型与被探测函数的原型匹配,jprobe都可以工作。

1.2 原理详解

JProbe必须将控制权转移到与放置探针的功能具有相同原型的另一个功能,然后将控制权以与执行JProbe之前相同的状态返回到原始功能。JProbe利用KProbe使用的机制。JProbe不调用用户定义的 pre-handler,而是指定自己的 pre-handler 函数setjmp_pre_handler(),并使用另一个处理函数break_handler。分为三个过程:

(1)第一步:当断点被命中时,控制到达kprobe_handler(),它调用jprobe pre-handler(setjmp_pre_handler())。这将在将rip(指令寄存器:指向下一条即将执行指令的地址)更改为用户定义函数的地址之前保存堆栈内容和寄存器。然后它返回1,告诉kprobe_handler() 简单地返回,而不是像kprobe那样设置单步执行。返回时,control 到达用户定义的函数以访问原始函数的参数。当用户定义的函数完成时,它调用jprobe_return() 而不是执行正常返回。

(2)第二步:jprobe_return() 截断当前堆栈帧并生成一个断点,该断点通过do_int3() 将控制权传递给kprobe_handler()。kprobe_handler() 发现生成的断点地址(jprobe_handller() 中int3指令的地址)没有注册的探测点,但是KProbes在当前CPU上处于活动状态。它假定断点必须是由 jprobes 生成的,因此调用了先前保存的current_kprobe的break_handler。break_handler还原在将控制权传递给用户定义函数之前保存的堆栈内容和寄存器,并返回。

(3)第三步:kprobe_handler() 然后设置jprobe指令的单步执行,后续与kprobe原理相同。
Linux jprobe的使用和原理_第2张图片
备注:jprobe 的 pre-handler函数:setjmp_pre_handler() 和 break_handler函数:longjmp_break_handler(),这两个函数不是用户定义的函数,而是在内核中已经设置好了,setjmp_pre_handler()负责在遇到探测点保存原始调用上下文,longjmp_break_handler()负责在离开探测点时恢复原始调用上下文。

上下文就是指探测函数点的一系列寄存器和堆栈内容,通过上下文信息返回原来的探测点正常执行路径。
jprobe需要保存探测点上下文信息,而kprobe不需要。

三、源码解析

3.1 struct jprobe

/*
 * Special probe type that uses setjmp-longjmp type tricks to resume
 * execution at a specified entry with a matching prototype corresponding
 * to the probed function - a trick to enable arguments to become
 * accessible seamlessly by probe handling logic.
 * Note:
 * Because of the way compilers allocate stack space for local variables
 * etc upfront, regardless of sub-scopes within a function, this mirroring
 * principle currently works only for probes placed on function entry points.
 */
struct jprobe {
	struct kprobe kp;
	void *entry;	/* probe handling code to jump to */
};

/* For backward compatibility with old code using JPROBE_ENTRY() */
#define JPROBE_ENTRY(handler)	(handler)

struct jprobe 是一种特殊的探测类型,它使用setjmp-longjmp类型技巧,以与被探测函数对应的匹配原型在指定的条目处恢复执行,这是一种技巧,使参数能够通过探测处理逻辑无缝访问。
由于编译器为本地变量等预先分配堆栈空间的方式,无论函数内的子作用域如何,这种镜像原则目前只适用于放置在函数入口点上的探测。

struct jprobe 用到的struct kprobe 的相关成员如下:

struct kprobe {
	......
	/* Allow user to indicate symbol name of the probe point */
	const char *symbol_name;
	......
	/* Called before addr is executed. */
	kprobe_pre_handler_t pre_handler;
	......
	/*
	 * ... called if breakpoint trap occurs in probe handler.
	 * Return 1 if it handled break, otherwise kernel will see it.
	 */
	kprobe_break_handler_t break_handler;
	......
};

3.2 register_jprobe

int __kprobes register_jprobe(struct jprobe *jp)
{
	return register_jprobes(&jp, 1);
}
EXPORT_SYMBOL_GPL(register_jprobe);
unsigned long __weak arch_deref_entry_point(void *entry)
{
	return (unsigned long)entry;
}

int __kprobes register_jprobes(struct jprobe **jps, int num)
{
	struct jprobe *jp;
	int ret = 0, i;

	if (num <= 0)
		return -EINVAL;
	for (i = 0; i < num; i++) {
		unsigned long addr, offset;
		jp = jps[i];
		addr = arch_deref_entry_point(jp->entry);

		/* Verify probepoint is a function entry point */
		if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
		    offset == 0) {
			jp->kp.pre_handler = setjmp_pre_handler;
			jp->kp.break_handler = longjmp_break_handler;
			ret = register_kprobe(&jp->kp);
		} else
			ret = -EINVAL;

		if (ret < 0) {
			if (i > 0)
				unregister_jprobes(jps, i);
			break;
		}
	}
	return ret;
}
EXPORT_SYMBOL_GPL(register_jprobes);

(1)从jp->entry中取出探测回调函数的地址,调用 kallsyms_lookup_size_offset 验证 probe point是否为函数入口点。kallsyms_lookup_size_offset函数的作用是从内核或者模块的符号表中找到addr地址所在的符号,找到后会通过offset值返回addr与符号起始的偏移,这偏移值必须为0,即必须为一个函数的入口。

(2)如果探测回调函数是函数的入口,则设置 struct jprobe 的 struct kprobe成员变量 pre_handler 为 setjmp_pre_handler,break_handler为 longjmp_break_handler,调用 register_kprobe 注册 kprobe点。

3.3 kprobe_handler

当断点被命中时,即执行了int 3指令,将会调用 do_int3 函数:

/* May run on IST stack. */
dotraplinkage void __kprobes notrace do_int3(struct pt_regs *regs, long error_code)
{
	enum ctx_state prev_state;
	
	......

	//通知链机制,执行注册的通知链:kprobe_exceptions_notify函数
	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
			SIGTRAP) == NOTIFY_STOP)
		goto exit;

	......
exit:
	exception_exit(prev_state);
}

jprobe用到主要是 int3 指令,执行int3 指令时,会调用kprobe_exceptions_notify函数,进而调用 kprobe_handler 函数:

// linux-3.10/arch/x86/kernel/kprobes/core.c

/*
 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
 * remain disabled throughout this function.
 */
static int __kprobes kprobe_handler(struct pt_regs *regs)
{
	kprobe_opcode_t *addr;
	struct kprobe *p;
	struct kprobe_ctlblk *kcb;

	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
	/*
	 * We don't want to be preempted for the entire
	 * duration of kprobe processing. We conditionally
	 * re-enable preemption at the end of this function,
	 * and also in reenter_kprobe() and setup_singlestep().
	 */
	preempt_disable();

	kcb = get_kprobe_ctlblk();
	p = get_kprobe(addr);

	if (p) {
		if (kprobe_running()) {
			if (reenter_kprobe(p, regs, kcb))
				return 1;
		} else {
			set_current_kprobe(p, regs, kcb);
			kcb->kprobe_status = KPROBE_HIT_ACTIVE;

			/*
			 * If we have no pre-handler or it returned 0, we
			 * continue with normal processing.  If we have a
			 * pre-handler and it returned non-zero, it prepped
			 * for calling the break_handler below on re-entry
			 * for jprobe processing, so get out doing nothing
			 * more here.
			 */
			if (!p->pre_handler || !p->pre_handler(p, regs))
				setup_singlestep(p, regs, kcb, 0);
			return 1;
		}
	} else if (*addr != BREAKPOINT_INSTRUCTION) {
		/*
		 * The breakpoint instruction was removed right
		 * after we hit it.  Another cpu has removed
		 * either a probepoint or a debugger breakpoint
		 * at this address.  In either case, no further
		 * handling of this interrupt is appropriate.
		 * Back up over the (now missing) int3 and run
		 * the original instruction.
		 */
		regs->ip = (unsigned long)addr;
		preempt_enable_no_resched();
		return 1;
	} else if (kprobe_running()) {
		p = __this_cpu_read(current_kprobe);
		if (p->break_handler && p->break_handler(p, regs)) {
			if (!skip_singlestep(p, regs, kcb))
				setup_singlestep(p, regs, kcb, 0);
			return 1;
		}
	} /* else: not a kprobe fault; let the kernel handle it */

	preempt_enable_no_resched();
	return 0;
}

/*
 * Wrapper routine for handling exceptions.
 */
int __kprobes
kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data)
{
	struct die_args *args = data;
	int ret = NOTIFY_DONE;

	if (args->regs && user_mode_vm(args->regs))
		return ret;

	switch (val) {
	case DIE_INT3:
		if (kprobe_handler(args->regs))
			ret = NOTIFY_STOP;
		break;
	case DIE_DEBUG:
		if (post_kprobe_handler(args->regs)) {
			/*
			 * Reset the BS bit in dr6 (pointed by args->err) to
			 * denote completion of processing
			 */
			(*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
			ret = NOTIFY_STOP;
		}
		break;
	case DIE_GPF:
		/*
		 * To be potentially processing a kprobe fault and to
		 * trust the result from kprobe_running(), we have
		 * be non-preemptible.
		 */
		if (!preemptible() && kprobe_running() &&
		    kprobe_fault_handler(args->regs, args->trapnr))
			ret = NOTIFY_STOP;
		break;
	default:
		break;
	}
	return ret;
}

注册内核通知链:kprobe_exceptions_nb,注释标明了该通知链最高,最先被调用,执行被探测指令期间若发生了内存异常,比如执行了int3指令, 将最优先调用kprobe_exceptions_notify函数。

// linux-3.10/kernel/kprobes.c

static struct notifier_block kprobe_exceptions_nb = {
	.notifier_call = kprobe_exceptions_notify,
	.priority = 0x7fffffff /* we need to be notified first */
};

static int __init init_kprobes(void)
{
	......
	//注册kprobe_exceptions_nb函数
	register_die_notifier(&kprobe_exceptions_nb);
	......
}

//kprobes作为一个模块,其初始化函数为init_kprobes
module_init(init_kprobes);
// linux-3.10/kernel/notifier.c

/**
 * notifier_call_chain - Informs the registered notifiers about an event.
 *	@nl:		Pointer to head of the blocking notifier chain
 *	@val:		Value passed unmodified to notifier function
 *	@v:		Pointer passed unmodified to notifier function
 *	@nr_to_call:	Number of notifier functions to be called. Don't care
 *			value of this parameter is -1.
 *	@nr_calls:	Records the number of notifications sent. Don't care
 *			value of this field is NULL.
 *	@returns:	notifier_call_chain returns the value returned by the
 *			last notifier function called.
 */
static int __kprobes notifier_call_chain(struct notifier_block **nl,
					unsigned long val, void *v,
					int nr_to_call,	int *nr_calls)
{
	int ret = NOTIFY_DONE;
	struct notifier_block *nb, *next_nb;

	nb = rcu_dereference_raw(*nl);

	while (nb && nr_to_call) {
		next_nb = rcu_dereference_raw(nb->next);

#ifdef CONFIG_DEBUG_NOTIFIERS
		if (unlikely(!func_ptr_is_kernel_text(nb->notifier_call))) {
			WARN(1, "Invalid notifier called!");
			nb = next_nb;
			continue;
		}
#endif
		ret = nb->notifier_call(nb, val, v);

		if (nr_calls)
			(*nr_calls)++;

		if ((ret & NOTIFY_STOP_MASK) == NOTIFY_STOP_MASK)
			break;
		nb = next_nb;
		nr_to_call--;
	}
	return ret;
}

/**
 *	__atomic_notifier_call_chain - Call functions in an atomic notifier chain
 *	@nh: Pointer to head of the atomic notifier chain
 *	@val: Value passed unmodified to notifier function
 *	@v: Pointer passed unmodified to notifier function
 *	@nr_to_call: See the comment for notifier_call_chain.
 *	@nr_calls: See the comment for notifier_call_chain.
 *
 *	Calls each function in a notifier chain in turn.  The functions
 *	run in an atomic context, so they must not block.
 *	This routine uses RCU to synchronize with changes to the chain.
 *
 *	If the return value of the notifier can be and'ed
 *	with %NOTIFY_STOP_MASK then atomic_notifier_call_chain()
 *	will return immediately, with the return value of
 *	the notifier function which halted execution.
 *	Otherwise the return value is the return value
 *	of the last notifier function called.
 */
int __kprobes __atomic_notifier_call_chain(struct atomic_notifier_head *nh,
					unsigned long val, void *v,
					int nr_to_call, int *nr_calls)
{
	int ret;

	rcu_read_lock();
	ret = notifier_call_chain(&nh->head, val, v, nr_to_call, nr_calls);
	rcu_read_unlock();
	return ret;
}
EXPORT_SYMBOL_GPL(__atomic_notifier_call_chain);

int __kprobes atomic_notifier_call_chain(struct atomic_notifier_head *nh,
		unsigned long val, void *v)
{
	return __atomic_notifier_call_chain(nh, val, v, -1, NULL);
}
EXPORT_SYMBOL_GPL(atomic_notifier_call_chain);

int notrace __kprobes notify_die(enum die_val val, const char *str,
	       struct pt_regs *regs, long err, int trap, int sig)
{
	struct die_args args = {
		.regs	= regs,
		.str	= str,
		.err	= err,
		.trapnr	= trap,
		.signr	= sig,

	};
	return atomic_notifier_call_chain(&die_chain, val, &args);
}
int3
	-->do_int3
		-->notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
			SIGTRAP) == NOTIFY_STOP)
				-->kprobe_exceptions_notify(){
					case DIE_INT3:
						if (kprobe_handler(args->regs))
							ret = NOTIFY_STOP;
						break;
					}

3.4 setjmp_pre_handler

// linux-3.10/arch/x86/include/asm/ptrace.h

struct pt_regs {
	unsigned long r15;
	unsigned long r14;
	unsigned long r13;
	unsigned long r12;
	unsigned long bp;
	unsigned long bx;
/* arguments: non interrupts/non tracing syscalls only save up to here*/
	unsigned long r11;
	unsigned long r10;
	unsigned long r9;
	unsigned long r8;
	unsigned long ax;
	unsigned long cx;
	unsigned long dx;
	unsigned long si;
	unsigned long di;
	unsigned long orig_ax;
/* end of arguments */
/* cpu exception frame or undefined */
	unsigned long ip;
	unsigned long cs;
	unsigned long flags;
	unsigned long sp;
	unsigned long ss;
/* top of stack page */
};
// linux-3.10/arch/x86/kernel/kprobes/core.c

DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
// linux-3.10/arch/x86/include/asm/kprobes.h

#ifdef CONFIG_KPROBES
DECLARE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);

/* per-cpu kprobe control block */
struct kprobe_ctlblk {
	......
	unsigned long *jprobe_saved_sp;
	struct pt_regs jprobe_saved_regs;
	kprobe_opcode_t jprobes_stack[MAX_STACK_SIZE];
	......
};

jprobe_saved_sp用于保存sp寄存器信息,用来存储栈顶地址。
jprobe_saved_regs用于保存寄存器信息。
jprobes_stack则用于保存堆栈信息。

struct kprobe_ctlblk 是一个 per-cpu变量:

[root@localhost ~]# cat /proc/kallsyms | grep __per_cpu_start
0000000000000000 A __per_cpu_start
[root@localhost ~]# cat /proc/kallsyms | grep kprobe_ctlblk
0000000000013360 A kprobe_ctlblk
[root@localhost ~]# cat /proc/kallsyms | grep __per_cpu_end
000000000001d000 A __per_cpu_end

// linux-3.10/include/linux/kprobes.h

static inline struct kprobe_ctlblk *get_kprobe_ctlblk(void)
{
	return (&__get_cpu_var(kprobe_ctlblk));
}
// linux-3.10/arch/x86/kernel/kprobes/core.c

int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
	struct jprobe *jp = container_of(p, struct jprobe, kp);
	unsigned long addr;
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	//保存探测点上下文信息:寄存器和堆栈内容
	kcb->jprobe_saved_regs = *regs;
	kcb->jprobe_saved_sp = stack_addr(regs);
	//获取栈顶地址
	addr = (unsigned long)(kcb->jprobe_saved_sp);

	/*
	 * As Linus pointed out, gcc assumes that the callee
	 * owns the argument space and could overwrite it, e.g.
	 * tailcall optimization. So, to be absolutely safe
	 * we also save and restore enough stack bytes to cover
	 * the argument area.
	 */
	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
	       MIN_STACK_SIZE(addr));
	regs->flags &= ~X86_EFLAGS_IF;
	//关闭中断
	trace_hardirqs_off();
	regs->ip = (unsigned long)(jp->entry);
	return 1;
}

当断点被命中时,即执行了int 3指令,控制到达kprobe_handler(),它将会调用jprobe pre-handler即 setjmp_pre_handler() 函数,此函数在用户预定义的函数之前先执行,对于我们的示例中就是 j_do_fork() ,setjmp_pre_handler() 函数在 j_do_fork() 之前执行,setjmp_pre_handler保存了探测点上下文信息后,就将指令寄存去 ip 指向用户态回调函数 jp->entry,然后返回1,这里返回1,在kprobe_handler中会跳过单步模式,在kprobe_handler函数中不会执行setup_singlestep函数了。在jprobe 执行 break_handler :longjmp_break_handler函数 之前 跳过单步模式。之后再执行用户态回调函数 jp->entry :j_do_fork,获取相应的参数值。

备注:这里探测函数(j_do_fork)是在kprobe_handler流程执行完成后跳转执行的,跳过了single_step流程,这也就说它不能利用原有kprobe的机制回到原始执行流程中去执行。

kprobe不需要保存原上下文信息。

// linux-3.10/arch/x86/kernel/kprobes/core.c

/*
 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
 * remain disabled throughout this function.
 */
static int __kprobes kprobe_handler(struct pt_regs *regs)
{
	......
	/*
	 * If we have no pre-handler or it returned 0, we
	 * continue with normal processing.  If we have a
	 * pre-handler and it returned non-zero, it prepped
	 * for calling the break_handler below on re-entry
	 * for jprobe processing, so get out doing nothing
	 * more here.
	 */
	if (!p->pre_handler || !p->pre_handler(p, regs))
		//在jprobe 执行 break_handler 之前 跳过单步模式
		setup_singlestep(p, regs, kcb, 0);
	return 1;
	......
}

执行用户自定义函数后,调用 jprobe_return 函数。

从setjmp_pre_handler的实现可以看出,该函数仅仅修改了kprobe的返回地址,并没有修改栈和其他的寄存器值,因此在CPU跳转到用户自定义函数:j_do_fork执行时,它的寄存器和栈中的内容同原本调用_do_fork函数时几乎是一模一样的(仅仅是禁用了中断而已),因此不论是通过寄存器传参还是通过压栈的方式传参,用户在定义jdo_fork函数时只需要将函数入参定义的同do_fork一样就可以轻轻松松的获取到原有的入参值了

3.5 jprobe_return

// linux-3.10/arch/x86/kernel/kprobes/core.c

void __kprobes jprobe_return(void)
{
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	asm volatile (
#ifdef CONFIG_X86_64
			"       xchg   %%rbx,%%rsp	\n"
#else
			"       xchgl   %%ebx,%%esp	\n"
#endif
			"       int3			\n"
			"       .globl jprobe_return_end\n"
			"       jprobe_return_end:	\n"
			"       nop			\n"::"b"
			(kcb->jprobe_saved_sp):"memory");
}

在 jprobe_return 执行 int 3指令:

/* May run on IST stack. */
dotraplinkage void __kprobes notrace do_int3(struct pt_regs *regs, long error_code)
{
	......
	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
		SIGTRAP) == NOTIFY_STOP)
	goto exit;
	......
}
int3
	-->do_int3
		-->notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
			SIGTRAP) == NOTIFY_STOP)
				-->kprobe_exceptions_notify(){
					case DIE_INT3:
						if (kprobe_handler(args->regs))
							ret = NOTIFY_STOP;
						break;
					}
/*
 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
 * remain disabled throughout this function.
 */
static int __kprobes kprobe_handler(struct pt_regs *regs)
{
	......
	} else if (kprobe_running()) {
		p = __this_cpu_read(current_kprobe);
		if (p->break_handler && p->break_handler(p, regs)) {
			if (!skip_singlestep(p, regs, kcb))
				setup_singlestep(p, regs, kcb, 0);
			return 1;
		}
	} /* else: not a kprobe fault; let the kernel handle it */
	......
}

执行 break_handler 函数:longjmp_break_handler,之后在设置为单步执行模式,与kprobe后续一致。

3.6 longjmp_break_handler

int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
{
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
	u8 *addr = (u8 *) (regs->ip - 1);
	struct jprobe *jp = container_of(p, struct jprobe, kp);

	if ((addr > (u8 *) jprobe_return) &&
	    (addr < (u8 *) jprobe_return_end)) {
		if (stack_addr(regs) != kcb->jprobe_saved_sp) {
			struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
			printk(KERN_ERR
			       "current sp %p does not match saved sp %p\n",
			       stack_addr(regs), kcb->jprobe_saved_sp);
			printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
			show_regs(saved_regs);
			printk(KERN_ERR "Current registers\n");
			show_regs(regs);
			BUG();
		}
		*regs = kcb->jprobe_saved_regs;
		memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp),
		       kcb->jprobes_stack,
		       MIN_STACK_SIZE(kcb->jprobe_saved_sp));
		preempt_enable_no_resched();
		return 1;
	}
	return 0;
}

恢复探测点上下文:寄存器和堆栈内容,打开内核抢占。然后后面开始执行单步模式,恢复 kprobe 原有执行路径。

四、Deprecated Features

Jprobes现在已被弃用。依赖它的人应该迁移到其他跟踪功能或使用较旧的内核。请考虑将工具迁移到以下选项之一:

(1) 使用 trace-event 跟踪带有参数的目标函数
trace-event 是一个低开销的静态定义的事件接口(如果关闭,几乎没有可见的开销)。您可以定义新事件,并通过ftrace或任何其他跟踪工具对其进行跟踪。
请参考:
https://lwn.net/Articles/379903/
https://lwn.net/Articles/381064/
https://lwn.net/Articles/383362/

(2) 将ftrace动态事件(kprobe event)与 perf-probe 一起使用
如果使用调试信息(CONFIG_debug_info=y)构建内核,则可以使用 perf-probe 查找分配给哪个本地变量或参数的寄存器/堆栈,并设置新事件来跟踪它。
请参考:
https://static.lwn.net/kerneldoc/trace/kprobetrace.html
https://static.lwn.net/kerneldoc/trace/events.html
tools/perf/Documentation/perf-probe.txt

五、使用 perf-probe 获取函数参数

(1)从调试符号表中查询 do_sys_open 的所有参数:perf probe -V do_sys_open ,如果这个命令执行失败,就说明调试符号表还没有安装, yum --enablerepo=base-debuginfo install -y kernel-debuginfo-$(uname -r)。

[root@localhost ~]# perf probe -V do_sys_open
Available variables at do_sys_open
        @<do_sys_open+0>
                char*   filename
                int     dfd
                int     flags
                struct open_flags       op
                umode_t mode

(2)找出参数名称和类型后,就可以把参数加到探针中了。
获取参数:filename:string

(3)添加带参数的探针:perf probe --add ‘do_sys_open filename:string’

[root@localhost ~]# perf probe --add 'do_sys_open filename:string'
Added new event:
  probe:do_sys_open    (on do_sys_open with filename:string)

You can now use it in all perf tools, such as:

        perf record -e probe:do_sys_open -aR sleep 1

(4)采样记录

perf record -e probe:do_sys_open -aR ls
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.557 MB perf.data (12 samples) ]

(5)查看结果

[root@localhost ~]# perf script
            perf 17873 [003] 372605.184198: probe:do_sys_open: (ffffffff95c3fdf0) filename_string="/proc/17880/status"
              ls 17880 [001] 372605.184591: probe:do_sys_open: (ffffffff95c3fdf0) filename_string="/etc/ld.so.cache"
              ls 17880 [001] 372605.184609: probe:do_sys_open: (ffffffff95c3fdf0) filename_string="/lib64/libselinux.so.1"
              ls 17880 [001] 372605.184642: probe:do_sys_open: (ffffffff95c3fdf0) filename_string="/lib64/libcap.so.2"
              ls 17880 [001] 372605.184664: probe:do_sys_open: (ffffffff95c3fdf0) filename_string="/lib64/libacl.so.1"
              ls 17880 [001] 372605.184686: probe:do_sys_open: (ffffffff95c3fdf0) filename_string="/lib64/libc.so.6"
              ls 17880 [001] 372605.184713: probe:do_sys_open: (ffffffff95c3fdf0) filename_string="/lib64/libpcre.so.1"
              ls 17880 [001] 372605.184734: probe:do_sys_open: (ffffffff95c3fdf0) filename_string="/lib64/libdl.so.2"
              ls 17880 [001] 372605.184757: probe:do_sys_open: (ffffffff95c3fdf0) filename_string="/lib64/libattr.so.1"
              ls 17880 [001] 372605.184777: probe:do_sys_open: (ffffffff95c3fdf0) filename_string="/lib64/libpthread.so.0"
              ls 17880 [001] 372605.185151: probe:do_sys_open: (ffffffff95c3fdf0) filename_string=""
              ls 17880 [001] 372605.185203: probe:do_sys_open: (ffffffff95c3fdf0) filename_string="."

(6)删除探针

[root@localhost ~]# perf probe --del probe:do_sys_open
Removed event: probe:do_sys_open

总结

jprobe基于kprobe实现,不能在函数的任意位置插入探测点,只能在函数的入口处探测,一般用于获取函数的入参值,一个被探测函数点只能注册一个jprobe。

高版本已经不推荐使用jprobe。

参考资料

https://lwn.net/Articles/132196/
https://blog.csdn.net/luckyapple1028/article/details/54350410
https://blog.csdn.net/qq_34908601/article/details/123772569
https://cloud.tencent.com/developer/article/1462867

你可能感兴趣的:(Linux,调试及其原理,linux,c语言,服务器)