多线程基础
lambada表达式
函数式接口
//第一步 创建资源类,定义属性和和操作方法
class Ticket {
//票数
private int number = 30;
//操作方法:卖票
public synchronized void sale() {
//判断:是否有票
if(number > 0) {
System.out.println(Thread.currentThread().getName()+" : 卖出:"+(number--)+" 剩下:"+number);
}
}
}
public class SaleTicket {
//第二步 创建多个线程,调用资源类的操作方法
public static void main(String[] args) {
//创建Ticket对象
Ticket ticket = new Ticket();
//创建三个线程
new Thread(new Runnable() {
@Override
public void run() {
//调用卖票方法
for (int i = 0; i < 40; i++) {
ticket.sale();
}
}
},"AA").start();
new Thread(new Runnable() {
@Override
public void run() {
//调用卖票方法
for (int i = 0; i < 40; i++) {
ticket.sale();
}
}
},"BB").start();
new Thread(new Runnable() {
@Override
public void run() {
//调用卖票方法
for (int i = 0; i < 40; i++) {
ticket.sale();
}
}
},"CC").start();
}
}
new Thread(new Runnable() {
@Override
public void run() {
//调用卖票方法
for (int i = 0; i < 40; i++) {
ticket.sale();
}
}
},"AA").start();
- 或者可以通过lambda表达式这样创建
new Thread(()-> {
for (int i = 0; i < 40; i++) {
ticket.sale();
}
}
},"AA").start();
不同于内置同步和监视器, LOCK是类
,可通过类实现同步访问,多个接口实现类:可重入锁等private final ReentrantLock lock = new ReentrantLock(true);
lock.lock();
lock.unlock();
//第一步 创建资源类,定义属性和和操作方法
class LTicket {
//票数量
private int number = 30;
//创建可重入锁
private final ReentrantLock lock = new ReentrantLock(true);
//卖票方法
public void sale() {
//上锁
lock.lock();
try {
//判断是否有票
if(number > 0) {
System.out.println(Thread.currentThread().getName()+" :卖出"+(number--)+" 剩余:"+number);
}
} finally {
//解锁
lock.unlock();
}
}
}
public class LSaleTicket {
//第二步 创建多个线程,调用资源类的操作方法
//创建三个线程
public static void main(String[] args) {
LTicket ticket = new LTicket();
new Thread(()-> {
for (int i = 0; i < 40; i++) {
ticket.sale();
}
},"AA").start();
new Thread(()-> {
for (int i = 0; i < 40; i++) {
ticket.sale();
}
},"BB").start();
new Thread(()-> {
for (int i = 0; i < 40; i++) {
ticket.sale();
}
},"CC").start();
}
}
public interface Lock {
void lock();
void lockInterruptibly() throws InterruptedException;
boolean tryLock();
boolean tryLock(long time, TimeUnit unit) throws InterruptedException;
void unlock();
Condition newCondition();
}
lock.lock();
try{
//处理任务
}catch(Exception ex){
}finally{
lock.unlock(); //释放锁
}
synchronized 与 wait()/notify()
这两个方法一起使用可以实现等待/通知模式,ReentrantLock可重入锁
writeLock();来获取读锁
readLock();获取写锁
是java关键字,内置
,而lock不是内置,是一个类
,可以实现同步访问且比synchronized中的方法更加丰富
synchronized不会手动释放锁
,而lock需手动释放锁(不解锁会出现死锁,需要在 finally 块中释放锁
)lock等待锁的线程会相应中断
,而synchronized不会响应中断
,只会一直等待Lock 可以知道有没有成功获取锁
,而 synchronized 却无法办到Lock
可以提高多个线程进行读操作的效率(当多个线程竞争的时候)
//第一步 创建资源类,定义属性和操作方法
class Share {
//初始值
private int number = 0;
//+1的方法
public synchronized void incr() throws InterruptedException {
//第二步 判断 干活 通知
if(number != 0) { //判断number值是否是0,如果不是0,等待
this.wait(); //在哪里睡,就在哪里醒
}
//如果number值是0,就+1操作
number++;
System.out.println(Thread.currentThread().getName()+" :: "+number);
//通知其他线程
this.notifyAll();
}
//-1的方法
public synchronized void decr() throws InterruptedException {
//判断
if(number != 1) {
this.wait();
}
//干活
number--;
System.out.println(Thread.currentThread().getName()+" :: "+number);
//通知其他线程
this.notifyAll();
}
}
public class ThreadDemo1 {
//第三步 创建多个线程,调用资源类的操作方法
public static void main(String[] args) {
Share share = new Share();
//创建线程
new Thread(()->{
for (int i = 1; i <=10; i++) {
try {
share.incr(); //+1
} catch (InterruptedException e) {
e.printStackTrace();
}
}
},"AA").start();
new Thread(()->{
for (int i = 1; i <=10; i++) {
try {
share.decr(); //-1
} catch (InterruptedException e) {
e.printStackTrace();
}
}
},"BB").start();
}
}
new Thread(()->{
for (int i = 1; i <=10; i++) {
try {
share.incr(); //+1
} catch (InterruptedException e) {
e.printStackTrace();
}
}
},"CC").start();
new Thread(()->{
for (int i = 1; i <=10; i++) {
try {
share.decr(); //-1
} catch (InterruptedException e) {
e.printStackTrace();
}
}
},"DD").start();
while(number != 0) { //判断number值是否是0,如果不是0,等待
this.wait(); //在哪里睡,就在哪里醒
}
//创建Lock
private Lock lock = new ReentrantLock();
private Condition condition = lock.newCondition();
- 上锁lock.lock();
- 解锁lock.unlock();
- 以下都为condition类:
- 唤醒所有等待的线程signalAll(),带上类名condition.signalAll();
- 唤醒一个等待线程signal(),带上类名,condition.signal();
- 造成当前线程在接到信号或者被中断之前一直处于等待状态await(),带上类名,condition.await();
//第一步 创建资源类,定义属性和操作方法
class Share {
private int number = 0;
//创建Lock
private Lock lock = new ReentrantLock();
private Condition condition = lock.newCondition();
//+1
public void incr() throws InterruptedException {
//上锁
lock.lock();
try {
//判断
while (number != 0) {
condition.await();
}
//干活
number++;
System.out.println(Thread.currentThread().getName()+" :: "+number);
//通知
condition.signalAll();
}finally {
//解锁
lock.unlock();
}
}
//-1
public void decr() throws InterruptedException {
lock.lock();
try {
while(number != 1) {
condition.await();
}
number--;
System.out.println(Thread.currentThread().getName()+" :: "+number);
condition.signalAll();
}finally {
lock.unlock();
}
}
}
public class ThreadDemo2 {
public static void main(String[] args) {
Share share = new Share();
new Thread(()->{
for (int i = 1; i <=10; i++) {
try {
share.incr();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
},"AA").start();
new Thread(()->{
for (int i = 1; i <=10; i++) {
try {
share.decr();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
},"BB").start();
new Thread(()->{
for (int i = 1; i <=10; i++) {
try {
share.incr();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
},"CC").start();
new Thread(()->{
for (int i = 1; i <=10; i++) {
try {
share.decr();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
},"DD").start();
}
}
AA打印5此,BB打印10次,CC打印15次,一共进行10轮
//第一步 创建资源类
class ShareResource {
//定义标志位
private int flag = 1; // 1 AA 2 BB 3 CC
//创建Lock锁
private Lock lock = new ReentrantLock();
//创建三个condition
private Condition c1 = lock.newCondition();
private Condition c2 = lock.newCondition();
private Condition c3 = lock.newCondition();
//打印5次,参数第几轮
public void print5(int loop) throws InterruptedException {
//上锁
lock.lock();
try {
//判断
while(flag != 1) {
//等待
c1.await();
}
//干活
for (int i = 1; i <=5; i++) {
System.out.println(Thread.currentThread().getName()+" :: "+i+" :轮数:"+loop);
}
//通知
flag = 2; //修改标志位 2
c2.signal(); //通知BB线程
}finally {
//释放锁
lock.unlock();
}
}
//打印10次,参数第几轮
public void print10(int loop) throws InterruptedException {
lock.lock();
try {
while(flag != 2) {
c2.await();
}
for (int i = 1; i <=10; i++) {
System.out.println(Thread.currentThread().getName()+" :: "+i+" :轮数:"+loop);
}
//修改标志位
flag = 3;
//通知CC线程
c3.signal();
}finally {
lock.unlock();
}
}
//打印15次,参数第几轮
public void print15(int loop) throws InterruptedException {
lock.lock();
try {
while(flag != 3) {
c3.await();
}
for (int i = 1; i <=15; i++) {
System.out.println(Thread.currentThread().getName()+" :: "+i+" :轮数:"+loop);
}
//修改标志位
flag = 1;
//通知AA线程
c1.signal();
}finally {
lock.unlock();
}
}
}
public class ThreadDemo3 {
public static void main(String[] args) {
ShareResource shareResource = new ShareResource();
new Thread(()->{
for (int i = 1; i <=10; i++) {
try {
shareResource.print5(i);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
},"AA").start();
new Thread(()->{
for (int i = 1; i <=10; i++) {
try {
shareResource.print10(i);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
},"BB").start();
new Thread(()->{
for (int i = 1; i <=10; i++) {
try {
shareResource.print15(i);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
},"CC").start();
}
}
//创建ArrayList集合
List<String> list = new ArrayList<>();
for (int i = 0; i <30; i++) {
new Thread(()->{
//向集合添加内容
list.add(UUID.randomUUID().toString().substring(0,8));
//从集合获取内容
System.out.println(list);
},String.valueOf(i)).start();
}
boolean add(E e);
通过list下的实现类Vector
因为在Vector下的add普遍都是线程安全
代码
public synchronized boolean add(E e) {
modCount++;
add(e, elementData, elementCount);
return true;
}
在改变代码时,只需要将其修改为List
但此方法用的比较少,因为在jdk 1.0的版本适用
Collections类中的很多方法都是static静态
其中有一个方法是返回指定列表支持的同步(线程安全的)列表为 synchronizedList(List
具体代码为
List
此方法也比较古老,很少使用
List list = new CopyOnWriteArrayList<>();
先复制相同的空间到某个区域,将其写到新区域,旧新合并,并且读新区域
(每次加新内容都写到新区域,覆盖合并之前旧区域,读取新区域添加的内容)该类是HashSet的实现类
同样使用HashSet类,也会出现线程不安全
Set
需要将上面的代码改为
Set
for (int i = 0; i <30; i++) {
new Thread(()->{
//向集合添加内容
set.add(UUID.randomUUID().toString().substring(0,8));
//从集合获取内容
System.out.println(set);
},String.valueOf(i)).start();
}
for (int i = 0; i <30; i++) {
String key = String.valueOf(i);
new Thread(()->{
//向集合添加内容
map.put(key,UUID.randomUUID().toString().substring(0,8));
//从集合获取内容
System.out.println(map);
},String.valueOf(i)).start();
}
将其代码修改为
Map
通过这行代码可以编程线程安全
静态同步方法用的也是同一把锁——类对象本身
,这两把锁是两个不同的对象,所以静态同步方法与非静态同步方法之间是不会有竞态条件
的但是一旦一个静态同步方法获取锁后,其他的静态同步方法都必须等待该方法释放锁后才能获取锁,而不管是同一个实例对象的静态同步方法之间,还是不同的实例对象的静态同步方法之间,只要它们同一个类的实例对象class Phone {
public synchronized void sendSMS() throws Exception {
//停留4秒
TimeUnit.SECONDS.sleep(4);
System.out.println("------sendSMS");
}
public synchronized void sendEmail() throws Exception {
System.out.println("------sendEmail");
}
public void getHello() {
System.out.println("------getHello");
}
}
通过调用锁的对象机制
public class Lock_8 {
public static void main(String[] args) throws Exception {
Phone phone = new Phone();
Phone phone2 = new Phone();
new Thread(() -> {
try {
phone.sendSMS();
} catch (Exception e) {
e.printStackTrace();
}
}, "AA").start();
Thread.sleep(100);
new Thread(() -> {
try {
// phone.sendEmail();
// phone.getHello();
phone2.sendEmail();
} catch (Exception e) {
e.printStackTrace();
}
}, "BB").start();
}
}
具体八种情况为
1 标准访问,先打印短信还是邮件
------sendSMS
------sendEmail
2 停4秒在短信方法内,先打印短信还是邮件
------sendSMS
------sendEmail
3 新增普通的hello方法,是先打短信还是hello
------getHello
------sendSMS
4 现在有两部手机,先打印短信还是邮件
------sendEmail
------sendSMS
5 两个静态同步方法,1部手机,先打印短信还是邮件
------sendSMS
------sendEmail
6 两个静态同步方法,2部手机,先打印短信还是邮件
------sendSMS
------sendEmail
7 1个静态同步方法,1个普通同步方法,1部手机,先打印短信还是邮件
------sendEmail
------sendSMS
8 1个静态同步方法,1个普通同步方法,2部手机,先打印短信还是邮件
------sendEmail
------sendSMS
//第一步 创建资源类,定义属性和和操作方法
class LTicket {
//票数量
private int number = 30;
//创建可重入锁
private final ReentrantLock lock = new ReentrantLock(true);
//卖票方法
public void sale() {
//上锁
lock.lock();
try {
//判断是否有票
if(number > 0) {
System.out.println(Thread.currentThread().getName()+" :卖出"+(number--)+" 剩余:"+number);
}
} finally {
//解锁
lock.unlock();
}
}
}
public class LSaleTicket {
//第二步 创建多个线程,调用资源类的操作方法
//创建三个线程
public static void main(String[] args) {
LTicket ticket = new LTicket();
new Thread(()-> {
for (int i = 0; i < 40; i++) {
ticket.sale();
}
},"AA").start();
new Thread(()-> {
for (int i = 0; i < 40; i++) {
ticket.sale();
}
},"BB").start();
new Thread(()-> {
for (int i = 0; i < 40; i++) {
ticket.sale();
}
},"CC").start();
}
}
都是A线程执行,而BC线程都没执行到,出现了非公平锁
具体改变其设置可以通过可重入锁中的一个有参构造方法
修改代码为private final ReentrantLock lock = new ReentrantLock(true);
代码截图为
synchronized和lock都是可重入锁
sychronized是隐式锁,不用手工上锁与解锁,而lock为显示锁,需要手工上锁与解锁
可重入锁也叫递归锁
而且有了可重入锁之后,破解第一把之后就可以一直进入到内层结构
sychronized
lock
public class DeadLock {
//创建两个对象
static Object a = new Object();
static Object b = new Object();
public static void main(String[] args) {
new Thread(()->{
synchronized (a) {
System.out.println(Thread.currentThread().getName()+" 持有锁a,试图获取锁b");
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (b) {
System.out.println(Thread.currentThread().getName()+" 获取锁b");
}
}
},"A").start();
new Thread(()->{
synchronized (b) {
System.out.println(Thread.currentThread().getName()+" 持有锁b,试图获取锁a");
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (a) {
System.out.println(Thread.currentThread().getName()+" 获取锁a");
}
}
},"B").start();
}
}
当线程终止时(即 run()完成时),我们无法使线程返回结果。为了支持此功能,Java 中提供了 Callable 接口
run()没有返回值,不会抛出异常。而call()有返回值,会抛出异常
//实现Runnable接口
class MyThread1 implements Runnable {
@Override
public void run() {
}
}
//实现Callable接口
class MyThread2 implements Callable {
@Override
public Integer call() throws Exception {
return 200;
}
}
具体在主函数中
通过Thread线程创建接口
只有这个可以new Thread(new MyThread1(),"AA").start();
这个不可以new Thread(new MyThread2(),"BB").start();
因为Thread的构造函数中没有Callable接口的参数设置
直接替换不可以,只能用下面这种线程创建方法
(找一个类,即和Runnable接口有关系,又和Callable接口有关系)
发现Runnable接口有实现类FutureTask(中间对象)
FutureTask的构造函数有Callable参数,通过FutureTask创建线程对象
FutureTask(Callable<> callable)
创建一个FutureTask,一旦运行就执行给定的CallableFutureTask(Runnable runnable,V result)
创建一个FutureTask,一旦运行就执行给定的Runnable你那边了,并安排成功完成时get返回给定的结果get()
获取结果isDone()
判断是否计算结束//实现Callable接口
class MyThread2 implements Callable {
@Override
public Integer call() throws Exception {
return 200;
}
}
FutureTask<Integer> futureTask1 = new FutureTask<>(new MyThread2());
- 二种
//lambda表达式
FutureTask<Integer> futureTask2 = new FutureTask<>(()->{
System.out.println(Thread.currentThread().getName()+" come in callable");
return 1024;
});
new Thread(futureTask2,"lucy").start();
System.out.println(futureTask2.get());
不影响主任务的同时,开启单线程完成某个特别的任务,之后主线程续上单线程的结果即可
(该单线程汇总给主线程只需要一次即可)如果之后主线程在开启该单线程,可以直接获得结果,因为之前已经执行过一次了
//比较两个接口
//实现Runnable接口
class MyThread1 implements Runnable {
@Override
public void run() {
}
}
//实现Callable接口
class MyThread2 implements Callable {
@Override
public Integer call() throws Exception {
System.out.println(Thread.currentThread().getName()+" come in callable");
return 200;
}
}
public class Demo1 {
public static void main(String[] args) throws ExecutionException, InterruptedException {
//Runnable接口创建线程
new Thread(new MyThread1(),"AA").start();
//Callable接口,报错
// new Thread(new MyThread2(),"BB").start();
//FutureTask
FutureTask<Integer> futureTask1 = new FutureTask<>(new MyThread2());
//lam表达式
FutureTask<Integer> futureTask2 = new FutureTask<>(()->{
System.out.println(Thread.currentThread().getName()+" come in callable");
return 1024;
});
//创建一个线程
new Thread(futureTask2,"lucy").start();
new Thread(futureTask1,"mary").start();
// while(!futureTask2.isDone()) {
// System.out.println("wait.....");
// }
//调用FutureTask的get方法
System.out.println(futureTask2.get());
System.out.println(futureTask1.get());
System.out.println(Thread.currentThread().getName()+" come over");
}
}
CountDownLatch
CyclicBarrier
Semaphore
CountDownLatch(int count)
构造一个用给定计数初始化的CountDownLatch在这里插入代码片public class CountDownLatchDemo {
//6个同学陆续离开教室之后,班长锁门
public static void main(String[] args) throws InterruptedException {
//6个同学陆续离开教室之后
for (int i = 1; i <=6; i++) {
new Thread(()->{
System.out.println(Thread.currentThread().getName()+" 号同学离开了教室");
},String.valueOf(i)).start();
}
System.out.println(Thread.currentThread().getName()+" 班长锁门走人了");
}
}
//演示 CountDownLatch
public class CountDownLatchDemo {
//6个同学陆续离开教室之后,班长锁门
public static void main(String[] args) throws InterruptedException {
//创建CountDownLatch对象,设置初始值
CountDownLatch countDownLatch = new CountDownLatch(6);
//6个同学陆续离开教室之后
for (int i = 1; i <=6; i++) {
new Thread(()->{
System.out.println(Thread.currentThread().getName()+" 号同学离开了教室");
//计数 -1
countDownLatch.countDown();
},String.valueOf(i)).start();
}
//等待
countDownLatch.await();
System.out.println(Thread.currentThread().getName()+" 班长锁门走人了");
}
}
CyclicBarrier(int parties,Runnable barrierAction)
创建一个新的CyclicBarrier,它将在给定数量的参与者(线程)处于等待状态时启动,//集齐7颗龙珠就可以召唤神龙
public class CyclicBarrierDemo {
//创建固定值
private static final int NUMBER = 7;
public static void main(String[] args) {
//创建CyclicBarrier
CyclicBarrier cyclicBarrier =
new CyclicBarrier(NUMBER,()->{
System.out.println("*****集齐7颗龙珠就可以召唤神龙");
});
//集齐七颗龙珠过程
for (int i = 1; i <=7; i++) {
new Thread(()->{
try {
System.out.println(Thread.currentThread().getName()+" 星龙被收集到了");
//等待
cyclicBarrier.await();
} catch (Exception e) {
e.printStackTrace();
}
},String.valueOf(i)).start();
}
}
}
·CyclicBarrier 的构造方法第一个参数是目标障碍数,每次执行 CyclicBarrier 一次障碍数会加一,如果达到了目标障碍数,才会执行 cyclicBarrier.await()之后的语句。可以将 CyclicBarrier 理解为加 1 操作·
Semaphore(int permits)
创建具有给定的许可数和非公平的公平设置的Semapore通过具体案例
6辆汽车,停3个车位
完整代码:
在这里插入代码片//6辆汽车,停3个车位
public class SemaphoreDemo {
public static void main(String[] args) {
//创建Semaphore,设置许可数量
Semaphore semaphore = new Semaphore(3);
//模拟6辆汽车
for (int i = 1; i <=6; i++) {
new Thread(()->{
try {
//抢占
semaphore.acquire();
System.out.println(Thread.currentThread().getName()+" 抢到了车位");
//设置随机停车时间
TimeUnit.SECONDS.sleep(new Random().nextInt(5));
System.out.println(Thread.currentThread().getName()+" ------离开了车位");
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
//释放
semaphore.release();
}
},String.valueOf(i)).start();
}
}
}
回顾悲观锁和乐观锁的概念
新概念:
案例分析:
模拟多线程在map中取数据和读数据
完整代码如图
//资源类
class MyCache {
//创建map集合
private volatile Map<String,Object> map = new HashMap<>();
//创建读写锁对象
private ReadWriteLock rwLock = new ReentrantReadWriteLock();
//放数据
public void put(String key,Object value) {
//添加写锁
rwLock.writeLock().lock();
try {
System.out.println(Thread.currentThread().getName()+" 正在写操作"+key);
//暂停一会
TimeUnit.MICROSECONDS.sleep(300);
//放数据
map.put(key,value);
System.out.println(Thread.currentThread().getName()+" 写完了"+key);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
//释放写锁
rwLock.writeLock().unlock();
}
}
//取数据
public Object get(String key) {
//添加读锁
rwLock.readLock().lock();
Object result = null;
try {
System.out.println(Thread.currentThread().getName()+" 正在读取操作"+key);
//暂停一会
TimeUnit.MICROSECONDS.sleep(300);
result = map.get(key);
System.out.println(Thread.currentThread().getName()+" 取完了"+key);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
//释放读锁
rwLock.readLock().unlock();
}
return result;
}
}
public class ReadWriteLockDemo {
public static void main(String[] args) throws InterruptedException {
MyCache myCache = new MyCache();
//创建线程放数据
for (int i = 1; i <=5; i++) {
final int num = i;
new Thread(()->{
myCache.put(num+"",num+"");
},String.valueOf(i)).start();
}
TimeUnit.MICROSECONDS.sleep(300);
//创建线程取数据
for (int i = 1; i <=5; i++) {
final int num = i;
new Thread(()->{
myCache.get(num+"");
},String.valueOf(i)).start();
}
}
}
//演示读写锁降级
public class Demo1 {
public static void main(String[] args) {
//可重入读写锁对象
ReentrantReadWriteLock rwLock = new ReentrantReadWriteLock();
ReentrantReadWriteLock.ReadLock readLock = rwLock.readLock();//读锁
ReentrantReadWriteLock.WriteLock writeLock = rwLock.writeLock();//写锁
//锁降级
//1 获取写锁
writeLock.lock();
System.out.println("manongyanjiuseng");
//2 获取读锁
readLock.lock();
System.out.println("---read");
//3 释放写锁
writeLock.unlock();
//4 释放读锁
readLock.unlock();
}
}
如果是读之后再写,执行不了
因为读锁权限小于写锁
需要读完之后释放读锁,在进行写锁
//2 获取读锁
readLock.lock();
System.out.println("---read");
//1 获取写锁
writeLock.lock();
System.out.println("manongyanjiuseng");
ArrayBlockingQueue
基于数组的阻塞队列
由数组结构组成的有界阻塞队列
-ArrayBlockingQueue 在生产者放入数据和消费者获取数据,都是共用同一个锁对象,无法并行
LinkedBlockingQueue
基于链表的阻塞队列
由链表结构组成的有界(但大小默认值为integer.MAX_VALUE)阻塞队列
之所以能够高效的处理并发数据,还因为其对于生产者端和消费者端分别采用了独立的锁来控制数据同步,这也意味着在高并发的情况下生产者和消费者可以并行地操作队列中的数据,以此来提高整个队列的并发性能
3.DelayQueue
使用优先级队列实现的延迟无界阻塞队列
DelayQueue 中的元素只有当其指定的延迟时间到了,才能够从队列中获取到该元素。DelayQueue 是一个没有大小限制的队列,因此往队列中插入数据的操作(生产者)永远不会被阻塞,而只有获取数据的操作(消费者)才会被阻塞
4.PriorityBlockingQueue
基于优先级的阻塞队列
支持优先级排序的无界阻塞队列
不会阻塞数据生产者,而只会在没有可消费的数据时,阻塞数据的消费者
5.SynchronousQueue
一种无缓冲的等待队列
相对于有缓冲的 BlockingQueue 来说,少了一个中间经销商的环节(缓冲区)
不存储元素的阻塞队列,也即单个元素的队列
声明一个 SynchronousQueue 有两种不同的方式,它们之间有着不太一样的行为。
公平模式和非公平模式的区别:
• 公平模式:SynchronousQueue 会采用公平锁,并配合一个 FIFO 队列来阻塞
多余的生产者和消费者,从而体系整体的公平策略;
• 非公平模式(SynchronousQueue 默认):SynchronousQueue 采用非公平锁,同时配合一个 LIFO 队列来管理多余的生产者和消费者
而后一种模式,如果生产者和消费者的处理速度有差距,则很容易出现饥渴的情况,即可能有某些生产者或者是消费者的数据永远都得不到处理
6.LinkedTransferQueue
由链表结构组成的无界阻塞 TransferQueue 队列
由链表组成的无界阻塞队列
预占模式。意思就是消费者线程取元素时,如果队列不为空,则直接取走数据,若队列为空,生成一个节点(节点元素为 null)入队,消费者线程被等待在这个节点上,生产者线程入队时发现有一个元素为 null 的节点,生产者线程就不入队了,直接就将元素填充到该节点,并唤醒该节点等待的线程,被唤醒的消费者线程取走元素,从调用的方法返回
7.LinkedBlockingDeque
由链表结构组成的双向阻塞队列
阻塞有两种情况
插入元素时: 如果当前队列已满将会进入阻塞状态,一直等到队列有空的位置时再该元素插入,该操作可以通过设置超时参数,超时后返回 false 表示操作失败,也可以不设置超时参数 一直阻塞,中断后抛出 InterruptedException异常
读取元素时: 如果当前队列为空会阻塞住直到队列不为空然后返回元素,同样可以通过设置超时参数
创建阻塞队列 BlockingQueue
加入元素System.out.println(blockingQueue.add("a"));
,成功为true,失败为false
检查元素System.out.println(blockingQueue.element());
第二种方法:
第三种方法:
该方法加入元素或者取出元素,如果满了或者空了,还进行下一步加入或者取出操作,会出现阻塞的状态,而第一二种方法是直接抛出异常
这避免了在处理短时间任务时创建与销毁线程的代价
。线程池不仅能够保证内核的充分利用,还能防止过分调度
降低资源消耗
: 通过重复利用已创建的线程降低线程创建和销毁造成的销耗。提高响应速度
: 当任务到达时,任务可以不需要等待线程创建就能立即执行。提高线程的可管理性:
线程是稀缺资源,如果无限制的创建,不仅会销耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。Executors.newFixedThreadPool(int)一池N线程
ExecutorService threadPool1 = Executors.newFixedThreadPool(5); //5个窗口
Executors.newSingleThreadExecutor()一池一线程
ExecutorService threadPool2 = Executors.newSingleThreadExecutor(); //一个窗口
Executors.newCachedThreadPool()一池可扩容根据需求创建线程
ExecutorService threadPool3 = Executors.newCachedThreadPool();
执行线程execute()
关闭线程shutdown()
void execute(Runnable command);参数为Runnable接口类,可以通过设置lambda
具体案例代码案例
//演示线程池三种常用分类
public class ThreadPoolDemo1 {
public static void main(String[] args) {
//一池五线程
ExecutorService threadPool1 = Executors.newFixedThreadPool(5); //5个窗口
//一池一线程
ExecutorService threadPool2 = Executors.newSingleThreadExecutor(); //一个窗口
//一池可扩容线程
ExecutorService threadPool3 = Executors.newCachedThreadPool();
//10个顾客请求
try {
for (int i = 1; i <=10; i++) {
//执行
threadPool3.execute(()->{
System.out.println(Thread.currentThread().getName()+" 办理业务");
});
}
}catch (Exception e) {
e.printStackTrace();
}finally {
//关闭
threadPool3.shutdown();
}
}
}
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
具体代码中的七个参数讲解:
int corePoolSize, 常驻线程数量(核心)
int maximumPoolSize,最大线程数量
long keepAliveTime,TimeUnit unit,线程存活时间
BlockingQueue workQueue,阻塞队列(排队的线程放入)
ThreadFactory threadFactory,线程工厂,用于创建线程
RejectedExecutionHandler handler拒绝测试(线程满了)
具体工作流程是:
具体的拒绝策略有:
// 自定义线程池
ExecutorService threadPool = new ThreadPoolExecutor(
2,
5,
2L,
TimeUnit.SECONDS,
new ArrayBlockingQueue<>(3),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.AbortPolicy()
);
其他都同理,只是调用ThreadPoolExecutor类,自定义参数
完整代码演示
//自定义线程池创建
public class ThreadPoolDemo2 {
public static void main(String[] args) {
ExecutorService threadPool = new ThreadPoolExecutor(
2,
5,
2L,
TimeUnit.SECONDS,
new ArrayBlockingQueue<>(3),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.AbortPolicy()
);
//10个顾客请求
try {
for (int i = 1; i <=10; i++) {
//执行
threadPool.execute(()->{
System.out.println(Thread.currentThread().getName()+" 办理业务");
});
}
}catch (Exception e) {
e.printStackTrace();
}finally {
//关闭
threadPool.shutdown();
}
}
}
class Fibonacci extends RecursiveTask<Integer> {
final int n;
Fibonacci(int n) { this.n = n; }
Integer compute() {
if (n <= 1)
return n;
Fibonacci f1 = new Fibonacci(n - 1);
f1.fork();
Fibonacci f2 = new Fibonacci(n - 2);
return f2.compute() + f1.join();
}
}
该算法相当于递归,且是二分查找思路
创建分支合并对象
通过该对象调用内部方法
具体案例:1加到100,相加两个数值不能大于10
完整代码如图
class MyTask extends RecursiveTask<Integer> {
//拆分差值不能超过10,计算10以内运算
private static final Integer VALUE = 10;
private int begin ;//拆分开始值
private int end;//拆分结束值
private int result ; //返回结果
//创建有参数构造
public MyTask(int begin,int end) {
this.begin = begin;
this.end = end;
}
//拆分和合并过程
@Override
protected Integer compute() {
//判断相加两个数值是否大于10
if((end-begin)<=VALUE) {
//相加操作
for (int i = begin; i <=end; i++) {
result = result+i;
}
} else {//进一步拆分
//获取中间值
int middle = (begin+end)/2;
//拆分左边
MyTask task01 = new MyTask(begin,middle);
//拆分右边
MyTask task02 = new MyTask(middle+1,end);
//调用方法拆分
task01.fork();
task02.fork();
//合并结果
result = task01.join()+task02.join();
}
return result;
}
}
public class ForkJoinDemo {
public static void main(String[] args) throws ExecutionException, InterruptedException {
//创建MyTask对象
MyTask myTask = new MyTask(0,100);
//创建分支合并池对象
ForkJoinPool forkJoinPool = new ForkJoinPool();
ForkJoinTask<Integer> forkJoinTask = forkJoinPool.submit(myTask);
//获取最终合并之后结果
Integer result = forkJoinTask.get();
System.out.println(result);
//关闭池对象
forkJoinPool.shutdown();
}
}
具体完整代码演示:
//异步调用和同步调用
public class CompletableFutureDemo {
public static void main(String[] args) throws Exception {
//y异步调用调用
CompletableFuture<Void> completableFuture1 = CompletableFuture.runAsync(()->{
System.out.println(Thread.currentThread().getName()+" : CompletableFuture1");
});
completableFuture1.get();
//mq消息队列
//异步调用
CompletableFuture<Integer> completableFuture2 = CompletableFuture.supplyAsync(()->{
System.out.println(Thread.currentThread().getName()+" : CompletableFuture2");
//模拟异常
int i = 10/0;
return 1024;
});
completableFuture2.whenComplete((t,u)->{
System.out.println("------t="+t);//返回值
System.out.println("------u="+u);//异常
}).get();
}
}
对比这两种方法,一个为同步一个为异步
Futrue 在 Java 里面,通常用来表示一个异步任务的引用,比如我们将任务提交到线程池里面,然后我们会得到一个 Futrue,在 Future 里面有 isDone 方法来 判断任务是否处理结束,还有 get 方法可以一直阻塞直到任务结束然后获取结果,但整体来说这种方式,还是同步的,因为需要客户端不断阻塞等待或者不断轮询才能知道任务是否完成
(1)不支持手动完成
我提交了一个任务,但是执行太慢了,我通过其他路径已经获取到了任务结果,现在没法把这个任务结果通知到正在执行的线程,所以必须主动取消或者一直等待它执行完成
(2)不支持进一步的非阻塞调用
通过 Future 的 get 方法会一直阻塞到任务完成,但是想在获取任务之后执行额外的任务,因为 Future 不支持回调函数,所以无法实现这个功能
(3)不支持链式调用
对于 Future 的执行结果,我们想继续传到下一个 Future 处理使用,从而形成一个链式的 pipline 调用,这在 Future 中是没法实现的。
(4)不支持多个 Future 合并
比如我们有 10 个 Future 并行执行,我们想在所有的 Future 运行完毕之后,执行某些函数,是没法通过 Future 实现的。
(5)不支持异常处理
Future 的 API 没有任何的异常处理的 api,所以在异步运行时,如果出了问题是不好定位的