ACCV2020细粒度比赛记录-数据处理和Baseline结果分享

比赛链接:

  • accv官网:https://sites.google.com/view/webfg2020
  • 比赛网站:https://www.cvmart.net/race/9917/base

数据下载:

  • Baidu / 百度云盘:
    链接: https://pan.baidu.com/s/1P0rpg0J34IUL5bvuA5f-pg
    提取码: cg9z
  • Google / 谷歌云盘
    https://drive.google.com/drive/folders/1ruvJow2Srp3wuqG1sYd_unG1EHBxYvI-?usp=sharing

Linux下合并解压:cat train.tar.gz.* | tar -zxv

1.数据清洗

训练集:5000类,557,169张图片

测试集:5000类,100,000张图片

由于数据来源于网络,可以视为直接从网站上爬虫下来且后缀全部改成了jpg格式,而从实际情况来看图片原本包含的格式有jpg、png、gif、tiff等,这就会导致使用代码读取的时候报错(Error)或者警告(Warning),因此需要先对数据进行清洗。Warning由于不会对程序运行造成影响,需要转换成可报错的Error,代码如下。

import warnings
warnings.filterwarnings('error')

根据实际情况清理出的报错主要有以下几种

  • corrupt EXIFPossibly corrupt EXIF,这种是EXIF信息缺失导致的,筛选出来再去掉其EXIF头就可以了

    # Refer: https://blog.csdn.net/a19990412/article/details/105940446
    # pip install piexif -i https://pypi.tuna.tsinghua.edu.cn/simple/
    import piexif
    piexif.remove(img_path)
    
  • Palette images with Transparency是在PIL调用convert('RGB')的时候抛出的,大概是说alpha通道的转换问题,暂时没有解决,先把非RGB(通道数不为3)的图筛选出来,因为后来发现不止4通道图,还有单通道和双通道的图,再单独对这部分数据筛选报错的,发现数量较少,直接从数据集中剔除处理。

  • image file could not be identified because WEBP,这是由于有的数据原本是webp格式,PIL读取有问题,而且好像是conda环境下才存在,解决方案有几种:

    • 升级PIL库,6.x,7.x是没有问题但是会抛出新的问题,为了避免麻烦,就用的5.4.1版本
    pip install Pillow==5.4.1
    
    • 安装webp库,更新PIL解决了就没有实测
  • 未知错误,在一开始排查没有查出来,所幸用了screen保存历史log,未知错误也只有几张,直接筛选出来了,错误信息如下:

    Image size (117762898 pixels) exceeds limit of 89478485 pixels
    Metadata Warning, tag 296 had too many entries
    Image appears to be a malformed MPO file
    

完整代码:

step1: 遍历所有图片,筛选有问题的

import os
from PIL import Image
import cv2
import warnings
warnings.filterwarnings('error')

root = './train'

f1 = open('pExifError.txt', 'w')
f2 = open('rgbaError.txt', 'w')
f3 = open('ExifError.txt', 'w')
f4 = open('4chImg.txt', 'w')
f5 = open('WebpError.txt', 'w')
f6 = open('UnknownError.txt', 'w')

idx = 0
for r, d, files in os.walk(root):
    if files != []:
        for i in files:
            fp = os.path.join(r, i)
            try:
                img = Image.open(fp)
                if(len(img.split()) != 3):
                    # print('4CH:', fp)
                    f4.write('{}\n'.format(fp))
                    
            except Exception as e:
                print('Error:', str(e))
                print(fp)
                if 'Possibly corrupt EXIF data' in str(e):
                    print('Exif error')
                    f1.write('{}\n'.format(fp))
                elif 'Palette images with Transparency' in str(e):
                    print('rgba error')
                    f2.write('{}\n'.format(fp))
                elif 'Corrupt EXIF data' in str(e):
                    print('pExif error')
                    f3.write('{}\n'.format(fp))
                elif 'image file could not be identified because WEBP' in str(e):
                    print('Webp error')
                    f5.write('{}\n'.format(fp))
                else:
                    print('Unknown error')
                    f6.write('{}\n'.format(fp))
    		
            if idx % 5000 == 0:
                print('='*20, idx)
            
            idx += 1

f1.close()
f2.close()
f3.close()
f4.close()
f5.close()
f6.close()

step2: 筛选不可转换的图片

import warnings
from PIL import Image
warnings.filterwarnings('error')

f1 = open('rgbaError.txt', 'w')
f2 = open('rgbaOK.txt', 'w')

with open('4chImg.txt', 'r')as f:
    for i in f.readlines():
        i = i.strip()
        try:
            img = Image.open(i).convert('RGB')
            f2.write('{}\n'.format(i))
            
        except Exception as e:
            print('Error:', str(e))
            print(i)
            f1.write('{}\n'.format(i))

f1.close()
f2.close()

step3: 修改和再测试

import os
import piexif
import warnings
from PIL import Image
warnings.filterwarnings('error')

files = ['ExifError.txt', 'pExifError.txt']

for file in files:
    with open(file, 'r')as f:
        for i in f.readlines():
            i = i.strip()
            print(i.strip())
            piexif.remove(i.strip())
            # try:
            #    img = Image.open(i)
            # except Exception as e:
            #     print('Error:', str(e))
            #     print(i)

2.划分数据集

个人习惯把路径存到txt再在dataset加载。

from sklearn.model_selection import train_test_split
import os

if __name__ == '__main__':
    root = './train'

    fpath = []
    labels = []
    for d in os.listdir(root):
        fd = os.path.join(root, d)
        label = int(d)
        for i in os.listdir(fd):
            fp = os.path.join(fd, i)
            fpath.append(fp)
            labels.append(label)
            
    print(len(fpath), len(labels))
    
    x_train, x_val, y_train, y_val = train_test_split(fpath, labels, random_state=999, test_size=0.2)
    print(len(x_train), len(x_val))

    with open('train.txt', 'w')as f:
        for fn, l in zip(x_train, y_train):
            f.write('{},{}\n'.format(fn, l))

    with open('val.txt', 'w')as f:
        for fn, l in zip(x_val, y_val):
            f.write('{},{}\n'.format(fn, l))

3.预处理

原数据由于尺寸不一,多数是高清图片,训练时resize会很耗时,因此先resize到一个小尺寸保存起来。Image.thumbnail()可以起到过滤的作用,如果hw在范围内就不会resize,超过就会按比例放缩。图像质量和JPG压缩问题参考博客1,博客2。

import os
from PIL import Image
import cv2
import shutil

root = './train'
save_path = './thumbnail'
for r, d, files in os.walk(root):
    if files != []:
        for i in files:
            fp = os.path.join(r, i)
            label = i.split('_')[0]
            dst = os.path.join(save_path, label)
            if not os.path.exists(dst):
                os.makedirs(dst)
            
            img = Image.open(fp).convert('RGB')
            w, h = img.size
            if max(w, h) > 1080:
                img.thumbnail((1080, 1080), Image.ANTIALIAS)
                img.save(os.path.join(dst, i), quality=95, subsampling=0)
            else:
                shutil.copy(fp, os.path.join(dst, i))

处理前数据集大小为114G,处理后为86G。

Tesla V100 32GB*2 硬件环境下,训练Baseline,处理前训练时间一个epoch约为2400s(40min),处理后一个epoch约1400s(23min),极大缩小了训练时间,精度应该没有什么影响,调小判别尺寸应该还能更快,毕竟训练数据尺寸是224x224。

4.Baseline
# ls: labelsmooth
# cat: cat(gmp, gap)
{
    model: resnet50,
    pool: cat,
    init_lr: 0.01,
    schedule: cos(warm: 5),
    epochs: <60,
    loss: ls 0.2,
    result: 41.497
}
{
    model: resnext50,
    pool: cat,
    init_lr: 0.01,
    shcedule: step(step: 8, gamma: 0.5),
    epochs: 60,
    loss: ls 0.2,
    result: 42.748
}

关于数据增强,这里补充一下训练集的transform,图像size是224:
ACCV2020细粒度比赛记录-数据处理和Baseline结果分享_第1张图片
验证集只有resize和centercrop,测试时没有随机擦除,采用了5次TTA。

_(:з」∠)_佛系参赛,等大佬们分享高分solution。

你可能感兴趣的:(比赛,深度学习)