import torch
from torch import nn
import torchvision
from torchvision import transforms,datasets,models
import matplotlib.pyplot as plt
import os,PIL,pathlib
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type='cuda')
data_dir = './data/'
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*/*.jpg')))
print("图片总数为:",image_count)
图片总数为: 578
classNames = [str(path).split('\\')[2] for path in data_dir.glob('train/*/')]
classNames
['adidas', 'nike']
roses= list(data_dir.glob('train/nike/*.jpg'))
PIL.Image.open(str(roses[0]))
train_transforms = transforms.Compose([
transforms.Resize([224, 224]),
transforms.RandomRotation(45),#随机旋转,-45到45度之间随机选
# transforms.CenterCrop(224),#从中心开始裁剪
transforms.RandomHorizontalFlip(p=0.5),#随机水平翻转 选择一个概率概率
# transforms.RandomVerticalFlip(p=0.5),#随机垂直翻转
# transforms.ColorJitter(brightness=0.2, contrast=0.1, saturation=0.1, hue=0.1),#参数1为亮度,参数2为对比度,参数3为饱和度,参数4为色相
# transforms.RandomGrayscale(p=0.025),#概率转换成灰度率,3通道就是R=G=B
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])#均值,标准差
])
test_transforms = transforms.Compose([
transforms.Resize([224, 224]),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
batch_size = 32
train_dataset = datasets.ImageFolder('./data/train/', transform = train_transforms)
test_dataset = datasets.ImageFolder('./data/test/', transform = test_transforms)
train_dl = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
classNames = train_dataset.classes
train_dataset.class_to_idx
{'adidas': 0, 'nike': 1}
imgs, labels = next(iter(train_dl))
imgs.shape
import numpy as np
# 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5))
for i, imgs in enumerate(imgs[:20]):
npimg = imgs.numpy().transpose((1,2,0))
npimg = npimg * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))
npimg = npimg.clip(0, 1)
# 将整个figure分成2行10列,绘制第i+1个子图。
plt.subplot(2, 10, i+1)
plt.imshow(npimg)
plt.axis('off')
for X,y in test_dl:
print('Shape of X [N, C, H, W]:', X.shape)
print('Shape of y:', y.shape)
break
Shape of X [N, C, H, W]: torch.Size([32, 3, 224, 224]) Shape of y: torch.Size([32])
搭建简单网络后发现由于数据量少导致过拟合,数据增强后最高准确率84%,说明模型不够好,选择改用Resnet18+迁移学习:
feature_extract = True
# 冻结参数
def set_parameter_requires_grad(model, feature_extracting):
if feature_extracting:
for param in model.parameters():
param.requires_grad = False
# 修改输出层
def initialize_model(num_classes, feature_extract, use_pretrained=True):
model_ft = models.resnet18(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, num_classes)
input_size = 32
return model_ft, input_size
model_ft, input_size = initialize_model(2, feature_extract, use_pretrained=True)
model_ft = model_ft.to(device)
model_ft
略
取出输出层参数 后面用于训练更新
# 设置训练哪些层
params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract: # 自己只训练输出层
params_to_update = []
for name,param in model_ft.named_parameters():
if param.requires_grad == True:
params_to_update.append(param)
print("\t",name)
else:
for name,param in model_ft.named_parameters():
if param.requires_grad == True:
print("\t",name)
Params to learn: fc.weight fc.bias
动态学习率
# 优化器设置
optimizer = torch.optim.Adam(params_to_update, lr=1e-4)#要训练啥参数,你来定
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.92)#学习率每7个epoch衰减成原来的1/10
loss_fn = nn.CrossEntropyLoss()
# def adjust_learning_rate(optimizer, epoch, start_lr):
# # 每2个 epoch衰减到原来的0.98
# lr = start_lr * (0.92 ** (epoch //2))
# for param_group in optimizer.param_groups:
# param_group['lr'] = lr
# optimizer = torch.optim.Adam(params_to_update,lr=1e-4)
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) # 训练集的大小,一共900张图片
num_batches = len(dataloader) # 批次数目,29(900/32)
train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
for X, y in dataloader: # 获取图片及其标签
X, y = X.to(device), y.to(device)
# 计算预测误差
pred = model(X) # 网络输出
loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
# 反向传播
optimizer.zero_grad() # grad属性归零
loss.backward() # 反向传播
optimizer.step() # 每一步自动更新
# 记录acc与loss
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
def test (dataloader, model, loss_fn):
size = len(dataloader.dataset) # 测试集的大小,一共10000张图片
num_batches = len(dataloader) # 批次数目,8(255/32=8,向上取整)
test_loss, test_acc = 0, 0
# 当不进行训练时,停止梯度更新,节省计算内存消耗
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
# 计算loss
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_loss += loss.item()
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []
best_acc = 0
filename='checkpoint.pth'
for epoch in range(epochs):
model_ft.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model_ft, loss_fn, optimizer)
scheduler.step()#学习率衰减
model_ft.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model_ft, loss_fn)
# 保存最优模型
if epoch_test_acc > best_acc:
best_acc = epoch_test_acc
state = {
'state_dict': model_ft.state_dict(),#字典里key就是各层的名字,值就是训练好的权重
'best_acc': best_acc,
'optimizer' : optimizer.state_dict(),
}
torch.save(state, filename)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
print('best_acc:',best_acc)
Epoch:17, Train_acc:65.9%, Train_loss:0.630, Test_acc:67.1%,Test_loss:0.615 Epoch:18, Train_acc:66.1%, Train_loss:0.613, Test_acc:64.5%,Test_loss:0.599 Epoch:19, Train_acc:63.7%, Train_loss:0.636, Test_acc:65.8%,Test_loss:0.579 Epoch:20, Train_acc:66.3%, Train_loss:0.612, Test_acc:65.8%,Test_loss:0.583 Done best_acc: 0.6593625498007968
for param in model_ft.parameters():
param.requires_grad = True
# 再继续训练所有的参数,学习率调小一点
optimizer = torch.optim.Adam(model_ft.parameters(), lr=1e-4)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.92)
# 损失函数
criterion = nn.CrossEntropyLoss()
# 加载之前训练好的权重参数
checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []
best_acc = 0
filename='best_resnet18.pth'
for epoch in range(epochs):
model_ft.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model_ft, loss_fn, optimizer)
scheduler.step()#学习率衰减
model_ft.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model_ft, loss_fn)
# 保存最优模型
if epoch_test_acc > best_acc:
best_acc = epoch_test_acc
state = {
'state_dict': model_ft.state_dict(),#字典里key就是各层的名字,值就是训练好的权重
'best_acc': best_acc,
'optimizer' : optimizer.state_dict(),
}
torch.save(state, filename)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
print('best_acc:',best_acc)
Epoch:18, Train_acc:99.8%, Train_loss:0.010, Test_acc:86.8%,Test_loss:0.398 Epoch:19, Train_acc:99.0%, Train_loss:0.031, Test_acc:93.4%,Test_loss:0.203 Epoch:20, Train_acc:99.2%, Train_loss:0.019, Test_acc:93.4%,Test_loss:0.184 Done best_acc: 0.9342105263157895
加载训练好的模型
model_ft, input_size = initialize_model(2, feature_extract, use_pretrained=True)
# GPU模式
model_ft = model_ft.to(device)
# 保存文件的名字
filename='best_resnet18.pth'
# 加载模型
checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])
结果可视化
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 #分辨率
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
测试模型
train_on_gpu = True
# 得到一个batch的测试数据
imgs, labels = next(iter(train_dl))
# 进行预测
model_ft.eval()
if train_on_gpu:
output = model_ft(imgs.cuda())
else:
output = model_ft(imgs)
# 获得预测结果(概率最大的)
_, preds_tensor = torch.max(output, 1)
preds = np.squeeze(preds_tensor.numpy()) if not train_on_gpu else np.squeeze(preds_tensor.cpu().numpy())
preds
array([0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1], dtype=int64)
import numpy as np
# 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 10))
for idx, imgs in enumerate(imgs[:10]):
#ax = fig.add_subplot(rows, columns, idx+1, xticks=[], yticks=[])
npimg = imgs.numpy().transpose((1,2,0))
npimg = npimg * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))
npimg = npimg.clip(0, 1)
# 将整个figure分成2行10列,绘制第i+1个子图。
ax = plt.subplot(2, 5, idx+1)
ax.set_title("{} ({})".format(classNames[preds[idx]], classNames[labels[idx]]),
color=("green" if classNames[preds[idx]]==classNames[labels[idx]] else "red"))
plt.imshow(npimg)
plt.axis('off')