定义
如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
KNN算法最早是由Cover和Hart提出的一种分类算法
计算距离公式
两个样本的距离可以通过如下公式计算,又叫欧式距离
比如说,a(a1,a2,a3),b(b1,b2,b3)
计算距离公式
两个样本的距离可以通过如下公式计算,又叫欧式距离
比如说,a(a1,a2,a3),b(b1,b2,b3)
K近邻需要做标准化处理
sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm=‘auto’)
n_neighbors:int,可选(默认= 5),k_neighbors查询默认使用的邻居数
algorithm:‘auto’,‘ball_tree’,‘kd_tree’,‘brute’},可选用于计算最近邻居的算法:
‘ball_tree’将会使用 BallTree,
‘kd_tree’将使用 KDTree。
‘auto’将尝试根据传递给fit方法的值来决定最合适的算法。
(不同实现方式影响效率)
数据处理
from sklearn.datasets import load_iris, fetch_20newsgroups, load_boston
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report
from sklearn.feature_extraction import DictVectorizer
from sklearn.tree import DecisionTreeClassifier, export_graphviz
from sklearn.ensemble import RandomForestClassifier
import pandas as pd
# li = load_iris()
# print("获取特征值")
# print(li.data)
# print("目标值")
# print(li.target)
# print(li.DESCR)
# 注意返回值, 训练集 train x_train, y_train 测试集 test x_test, y_test
# x_train, x_test, y_train, y_test = train_test_split(li.data, li.target, test_size=0.25)
#
# print("训练集特征值和目标值:", x_train, y_train)
# print("测试集特征值和目标值:", x_test, y_test)
# news = fetch_20newsgroups(subset='all')
#
# print(news.data)
# print(news.target)
#
# lb = load_boston()
#
# print("获取特征值")
# print(lb.data)
# print("目标值")
# print(lb.target)
# print(lb.DESCR)
def knncls():
"""
K-近邻预测用户签到位置
:return:None
"""
# 读取数据
data = pd.read_csv("./data/FBlocation/train.csv")
# print(data.head(10))
# 处理数据
# 1、缩小数据,查询数据晒讯
data = data.query("x > 1.0 & x < 1.25 & y > 2.5 & y < 2.75")
# 处理时间的数据
time_value = pd.to_datetime(data['time'], unit='s')
print(time_value)
# 把日期格式转换成 字典格式
time_value = pd.DatetimeIndex(time_value)
# 构造一些特征
data['day'] = time_value.day
data['hour'] = time_value.hour
data['weekday'] = time_value.weekday
# 把时间戳特征删除
data = data.drop(['time'], axis=1)
print(data)
# 把签到数量少于n个目标位置删除
place_count = data.groupby('place_id').count()
tf = place_count[place_count.row_id > 3].reset_index()
data = data[data['place_id'].isin(tf.place_id)]
# 取出数据当中的特征值和目标值
y = data['place_id']
x = data.drop(['place_id'], axis=1)
# 进行数据的分割训练集合测试集
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
# 特征工程(标准化)
std = StandardScaler()
# 对测试集和训练集的特征值进行标准化
x_train = std.fit_transform(x_train)
x_test = std.transform(x_test)
# 进行算法流程 # 超参数
knn = KNeighborsClassifier()
# # fit, predict,score
# knn.fit(x_train, y_train)
#
# # 得出预测结果
# y_predict = knn.predict(x_test)
#
# print("预测的目标签到位置为:", y_predict)
#
# # 得出准确率
# print("预测的准确率:", knn.score(x_test, y_test))
# 构造一些参数的值进行搜索
param = {"n_neighbors": [3, 5, 10]}
# 进行网格搜索
gc = GridSearchCV(knn, param_grid=param, cv=2)
gc.fit(x_train, y_train)
# 预测准确率
print("在测试集上准确率:", gc.score(x_test, y_test))
print("在交叉验证当中最好的结果:", gc.best_score_)
print("选择最好的模型是:", gc.best_estimator_)
print("每个超参数每次交叉验证的结果:", gc.cv_results_)
return None
def naviebayes():
"""
朴素贝叶斯进行文本分类
:return: None
"""
news = fetch_20newsgroups(subset='all')
# 进行数据分割
x_train, x_test, y_train, y_test = train_test_split(news.data, news.target, test_size=0.25)
# 对数据集进行特征抽取
tf = TfidfVectorizer()
# 以训练集当中的词的列表进行每篇文章重要性统计['a','b','c','d']
x_train = tf.fit_transform(x_train)
print(tf.get_feature_names())
x_test = tf.transform(x_test)
# 进行朴素贝叶斯算法的预测
mlt = MultinomialNB(alpha=1.0)
print(x_train.toarray())
mlt.fit(x_train, y_train)
y_predict = mlt.predict(x_test)
print("预测的文章类别为:", y_predict)
# 得出准确率
print("准确率为:", mlt.score(x_test, y_test))
print("每个类别的精确率和召回率:", classification_report(y_test, y_predict, target_names=news.target_names))
return None
def decision():
"""
决策树对泰坦尼克号进行预测生死
:return: None
"""
# 获取数据
titan = pd.read_csv("http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt")
# 处理数据,找出特征值和目标值
x = titan[['pclass', 'age', 'sex']]
y = titan['survived']
print(x)
# 缺失值处理
x['age'].fillna(x['age'].mean(), inplace=True)
# 分割数据集到训练集合测试集
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
# 进行处理(特征工程)特征-》类别-》one_hot编码
dict = DictVectorizer(sparse=False)
x_train = dict.fit_transform(x_train.to_dict(orient="records"))
print(dict.get_feature_names())
x_test = dict.transform(x_test.to_dict(orient="records"))
# print(x_train)
# 用决策树进行预测
# dec = DecisionTreeClassifier()
#
# dec.fit(x_train, y_train)
#
# # 预测准确率
# print("预测的准确率:", dec.score(x_test, y_test))
#
# # 导出决策树的结构
# export_graphviz(dec, out_file="./tree.dot", feature_names=['年龄', 'pclass=1st', 'pclass=2nd', 'pclass=3rd', '女性', '男性'])
# 随机森林进行预测 (超参数调优)
rf = RandomForestClassifier(n_jobs=-1)
param = {"n_estimators": [120, 200, 300, 500, 800, 1200], "max_depth": [5, 8, 15, 25, 30]}
# 网格搜索与交叉验证
gc = GridSearchCV(rf, param_grid=param, cv=2)
gc.fit(x_train, y_train)
print("准确率:", gc.score(x_test, y_test))
print("查看选择的参数模型:", gc.best_params_)
return None
if __name__ == "__main__":
decision()