机器学习算法基础 Day3

机器学习算法基础 Day3_第1张图片

机器学习算法基础 Day3_第2张图片

定义
如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

KNN算法最早是由Cover和Hart提出的一种分类算法

计算距离公式
两个样本的距离可以通过如下公式计算,又叫欧式距离

比如说,a(a1,a2,a3),b(b1,b2,b3)

计算距离公式

两个样本的距离可以通过如下公式计算,又叫欧式距离

比如说,a(a1,a2,a3),b(b1,b2,b3)

在这里插入图片描述

K近邻需要做标准化处理

sklearn k-近邻算法API

sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm=‘auto’)

 n_neighbors:int,可选(默认= 5),k_neighbors查询默认使用的邻居数
algorithm:‘auto’,‘ball_tree’,‘kd_tree’,‘brute’},可选用于计算最近邻居的算法:
‘ball_tree’将会使用 BallTree,
‘kd_tree’将使用 KDTree。
‘auto’将尝试根据传递给fit方法的值来决定最合适的算法。
(不同实现方式影响效率)
 

机器学习算法基础 Day3_第3张图片

机器学习算法基础 Day3_第4张图片

数据处理 

机器学习算法基础 Day3_第5张图片

from sklearn.datasets import load_iris, fetch_20newsgroups, load_boston
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report
from sklearn.feature_extraction import DictVectorizer
from sklearn.tree import DecisionTreeClassifier, export_graphviz
from sklearn.ensemble import RandomForestClassifier
import pandas as pd


# li = load_iris()

# print("获取特征值")
# print(li.data)
# print("目标值")
# print(li.target)
# print(li.DESCR)

# 注意返回值, 训练集 train  x_train, y_train        测试集  test   x_test, y_test
# x_train, x_test, y_train, y_test = train_test_split(li.data, li.target, test_size=0.25)
#
# print("训练集特征值和目标值:", x_train, y_train)
# print("测试集特征值和目标值:", x_test, y_test)

# news = fetch_20newsgroups(subset='all')
#
# print(news.data)
# print(news.target)
#
# lb = load_boston()
#
# print("获取特征值")
# print(lb.data)
# print("目标值")
# print(lb.target)
# print(lb.DESCR)


def knncls():
    """
    K-近邻预测用户签到位置
    :return:None
    """
    # 读取数据
    data = pd.read_csv("./data/FBlocation/train.csv")

    # print(data.head(10))

    # 处理数据
    # 1、缩小数据,查询数据晒讯
    data = data.query("x > 1.0 &  x < 1.25 & y > 2.5 & y < 2.75")

    # 处理时间的数据
    time_value = pd.to_datetime(data['time'], unit='s')

    print(time_value)

    # 把日期格式转换成 字典格式
    time_value = pd.DatetimeIndex(time_value)

    # 构造一些特征
    data['day'] = time_value.day
    data['hour'] = time_value.hour
    data['weekday'] = time_value.weekday

    # 把时间戳特征删除
    data = data.drop(['time'], axis=1)

    print(data)

    # 把签到数量少于n个目标位置删除
    place_count = data.groupby('place_id').count()

    tf = place_count[place_count.row_id > 3].reset_index()

    data = data[data['place_id'].isin(tf.place_id)]

    # 取出数据当中的特征值和目标值
    y = data['place_id']

    x = data.drop(['place_id'], axis=1)

    # 进行数据的分割训练集合测试集
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)

    # 特征工程(标准化)
    std = StandardScaler()

    # 对测试集和训练集的特征值进行标准化
    x_train = std.fit_transform(x_train)

    x_test = std.transform(x_test)

    # 进行算法流程 # 超参数
    knn = KNeighborsClassifier()

    # # fit, predict,score
    # knn.fit(x_train, y_train)
    #
    # # 得出预测结果
    # y_predict = knn.predict(x_test)
    #
    # print("预测的目标签到位置为:", y_predict)
    #
    # # 得出准确率
    # print("预测的准确率:", knn.score(x_test, y_test))

    # 构造一些参数的值进行搜索
    param = {"n_neighbors": [3, 5, 10]}

    # 进行网格搜索
    gc = GridSearchCV(knn, param_grid=param, cv=2)

    gc.fit(x_train, y_train)

    # 预测准确率
    print("在测试集上准确率:", gc.score(x_test, y_test))

    print("在交叉验证当中最好的结果:", gc.best_score_)

    print("选择最好的模型是:", gc.best_estimator_)

    print("每个超参数每次交叉验证的结果:", gc.cv_results_)

    return None


def naviebayes():
    """
    朴素贝叶斯进行文本分类
    :return: None
    """
    news = fetch_20newsgroups(subset='all')

    # 进行数据分割
    x_train, x_test, y_train, y_test = train_test_split(news.data, news.target, test_size=0.25)

    # 对数据集进行特征抽取
    tf = TfidfVectorizer()

    # 以训练集当中的词的列表进行每篇文章重要性统计['a','b','c','d']
    x_train = tf.fit_transform(x_train)

    print(tf.get_feature_names())

    x_test = tf.transform(x_test)

    # 进行朴素贝叶斯算法的预测
    mlt = MultinomialNB(alpha=1.0)

    print(x_train.toarray())

    mlt.fit(x_train, y_train)

    y_predict = mlt.predict(x_test)

    print("预测的文章类别为:", y_predict)

    # 得出准确率
    print("准确率为:", mlt.score(x_test, y_test))

    print("每个类别的精确率和召回率:", classification_report(y_test, y_predict, target_names=news.target_names))

    return None


def decision():
    """
    决策树对泰坦尼克号进行预测生死
    :return: None
    """
    # 获取数据
    titan = pd.read_csv("http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt")

    # 处理数据,找出特征值和目标值
    x = titan[['pclass', 'age', 'sex']]

    y = titan['survived']

    print(x)
    # 缺失值处理
    x['age'].fillna(x['age'].mean(), inplace=True)

    # 分割数据集到训练集合测试集
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)

    # 进行处理(特征工程)特征-》类别-》one_hot编码
    dict = DictVectorizer(sparse=False)

    x_train = dict.fit_transform(x_train.to_dict(orient="records"))

    print(dict.get_feature_names())

    x_test = dict.transform(x_test.to_dict(orient="records"))

    # print(x_train)
    # 用决策树进行预测
    # dec = DecisionTreeClassifier()
    #
    # dec.fit(x_train, y_train)
    #
    # # 预测准确率
    # print("预测的准确率:", dec.score(x_test, y_test))
    #
    # # 导出决策树的结构
    # export_graphviz(dec, out_file="./tree.dot", feature_names=['年龄', 'pclass=1st', 'pclass=2nd', 'pclass=3rd', '女性', '男性'])

    # 随机森林进行预测 (超参数调优)
    rf = RandomForestClassifier(n_jobs=-1)

    param = {"n_estimators": [120, 200, 300, 500, 800, 1200], "max_depth": [5, 8, 15, 25, 30]}

    # 网格搜索与交叉验证
    gc = GridSearchCV(rf, param_grid=param, cv=2)

    gc.fit(x_train, y_train)

    print("准确率:", gc.score(x_test, y_test))

    print("查看选择的参数模型:", gc.best_params_)

    return None


if __name__ == "__main__":
    decision()

你可能感兴趣的:(算法,python)