YOLOv5白皮书-第Y3周:yolov5s.yaml文件解读

目录

  • 一、课题背景和开发环境
    • 开发环境
  • 二、参数配置
  • 三、anchors配置
  • 四、backbone
  • 五、head
  • 六、调整模型
  • 七、打印模型查看

一、课题背景和开发环境

第Y3周:yolov5s.yaml文件解读

  • 语言:Python3、Pytorch
  • 本周任务:将yolov5s网络模型中第4层的C3*2修改为C3*1,第6层的C3*3修改我C3*2
  • 任务提示:仅需修改./models/yolov5s.yaml文件

YOLOv5配置了4种不同大小的网络模型,分别是YOLOv5sYOLOv5mYOLOv5lYOLOv5x,其中YOLOv5s是网络深度和宽度最小但检测速度最快的模型,其他3中模型都是在YOLOv5s的基础上不断加深、加宽网络使得网络规模扩大,在增强模型检测性能的同时增加了计算资源和速度消耗。出于对检测精度、模型大小、检测速度的综合考量,本文选择YOLOv5s作为研究对象进行介绍。
./models/yolov5s.yaml文件是YOLOv5s网络结构的定义文件,如果你想改进算法的网络结构,需先修改该文件中的相关参数,然后再修改./models/common.py./models/yolo.py中的相关代码。


开发环境

  • 电脑系统:Windows 10
  • 语言环境:Python 3.8.2
  • 编译器:无(直接在cmd.exe内运行)
  • 深度学习环境:Pytorch 1.8.1+cu111
  • 显卡及显存:NVIDIA GeForce GTX 1660 Ti 12G
  • CUDA版本:Release 10.2, V10.2.89(cmd输入nvcc -Vnvcc --version指令可查看)
  • YOLOv5开源地址:YOLOv5开源地址
  • 数据:水果检测

YOLOv5s网络结构图
C3模块网络结构图

二、参数配置

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple    控制模型深度
width_multiple: 0.50  # layer channel multiple  控制COnv通道channel个数(卷积核数量)
  • depth_multiple:控制子模块数量, = int(number*depth),该参数与任务有关
  • width_multiple:控制卷积核的数量, = int(number*width)

通过这两个参数可以实现不同复杂度的模型设计。YOLOv5sYOLOv5mYOLOv5lYOLOv5x这四个模型的区别仅在于depth_multiplewidth_multiple这两个参数不同。


三、anchors配置

anchors:
  - [10,13, 16,30, 33,23]       # P3/8 ,检测小目标,每两个尺寸参数一组,共三组
  - [30,61, 62,45, 59,119]      # P4/16,检测中目标,共三组
  - [116,90, 156,198, 373,326]  # P5/32,检测大目标,共三组

目标3组:[10, 13], [16, 30], [33, 23]
目标3组:[30, 61], [62, 45], [59,119]
目标3组:[116,90], [156,198], [373,326]

YOLOv5初始化了9个anchor,在3个Detect层(3个feature map)中使用,每个feature map的每个grid_cell都有3个anchor进行预测。分配规则是:尺度越大的feature map越靠前,相对原图的下采样率越小,感受野越小,则相对可以预测一些尺度比较小的物体,所有分配到定anchor越小;尺度越小的feature map越靠后,相对原图的下采样率越大,感受野越大,则相对可以预测一些尺寸比较大的物体,所有分配到的anchor也越大。即可以在小特征图(feature map)上检测大目标,也可以在大特征图上检测小目标。
YOLOv5根据工程经验得到了这么3组anchors(9对尺寸参数),对于很多数据集而言已经很合适了。但也不能保证这3组anchor就适用于所有数据集,所以YOLOv5还有一个anchor进化的策略:使用k-means和遗传进化算法,找到与当前数据集最吻合的anchors。

k-means:对当前数据集中所有的标注信息中的目标框的尺寸做聚类,输出9对anchors的值。下面是我找到的一段聚类输出anchors的代码。

yolo_kmeans.py

import numpy as np


def wh_iou(wh1, wh2):
    # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
    wh1 = wh1[:, None]  # [N,1,2]
    wh2 = wh2[None]  # [1,M,2]
    inter = np.minimum(wh1, wh2).prod(2)  # [N,M]
    return inter / (wh1.prod(2) + wh2.prod(2) - inter)  # iou = inter / (area1 + area2 - inter)


def k_means(boxes, k, dist=np.median):
    """
    yolo k-means methods
    refer: https://github.com/qqwweee/keras-yolo3/blob/master/kmeans.py
    Args:
        boxes: 需要聚类的bboxes
        k: 簇数(聚成几类)
        dist: 更新簇坐标的方法(默认使用中位数,比均值效果略好)
    """
    box_number = boxes.shape[0]
    last_nearest = np.zeros((box_number,))

    # 在所有的bboxes中随机挑选k个作为簇的中心。
    clusters = boxes[np.random.choice(box_number, k, replace=False)]

    while True:
    	# 计算每个bboxes离每个簇的距离 1-IOU(bboxes, anchors)
        distances = 1 - wh_iou(boxes, clusters)
        # 计算每个bboxes距离最近的簇中心
        current_nearest = np.argmin(distances, axis=1)
        # 每个簇中元素不在发生变化说明以及聚类完毕
        if (last_nearest == current_nearest).all():
            break  # clusters won't change
        for cluster in range(k):
            # 根据每个簇中的bboxes重新计算簇中心
            clusters[cluster] = dist(boxes[current_nearest == cluster], axis=0)

        last_nearest = current_nearest

    return clusters

四、backbone

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

这是YOLOv5sbackbone,可以看到每一行是一个模块,每行都是由四个参数构成,分别是:

  • from:表示当前模块的输入来自哪一层的输出,-1表示来自上一层的输出,层编号由0开始计数。
  • number:表示当前模块的理论重复次数,实际的重复次数还要由上面的参数depth_multiple共同决定,该参数影响整体网络模型的深度。
  • module:模块类名(也可以理解为模块的功能),通过这个类名在common.py中寻找相应的类,进行模块化的网络搭建。
  • args:是一个list,对应到模块类搭建时需要的参数,主要是channelkernel_sizestridepaddingbias等。

五、head

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

这是YOLOv5shead,数据格式和backbone一样。


六、调整模型

我们需要调整的地方主要是backbone部分,调整如下:
第4层的C3*2修改为C3*1,第6层的C3*3修改我C3*2

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 3, C3, [256]], # 第4层改为C3*1
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 6, C3, [512]], # 第6层改为C3*2
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

七、打印模型查看

Overriding model.yaml nc=80 with nc=4

                 from  n    params  module                                  arguments
  0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]
  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]
  2                -1  1     18816  models.common.C3                        [64, 64, 1]
  3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]
  4                -1  1     74496  models.common.C3                        [128, 128, 1]
  5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]
  6                -1  2    460800  models.common.C3                        [256, 256, 2]
  7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]
  8                -1  1   1182720  models.common.C3                        [512, 512, 1]
  9                -1  1    656896  models.common.SPPF                      [512, 512, 5]
 10                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]
 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']
 12           [-1, 6]  1         0  models.common.Concat                    [1]
 13                -1  1    361984  models.common.C3                        [512, 256, 1, False]
 14                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]
 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']
 16           [-1, 4]  1         0  models.common.Concat                    [1]
 17                -1  1     90880  models.common.C3                        [256, 128, 1, False]
 18                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]
 19          [-1, 14]  1         0  models.common.Concat                    [1]
 20                -1  1    296448  models.common.C3                        [256, 256, 1, False]
 21                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]
 22          [-1, 10]  1         0  models.common.Concat                    [1]
 23                -1  1   1182720  models.common.C3                        [512, 512, 1, False]
 24      [17, 20, 23]  1     24273  models.yolo.Detect                      [4, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
YOLOv5s summary: 200 layers, 6824849 parameters, 6824849 gradients, 14.9 GFLOPs

从日志打印出来的当前网络结构可以看到:
· 网络第4层为C3模块,重复1次;
· 网络第6层为C3模块,重复2次;

你可能感兴趣的:(365天深度学习训练记录,python,深度学习,pytorch)