python画函数点图_详解pandas.DataFrame.plot() 画图函数

首先看官网的DataFrame.plot( )函数

DataFrame.plot(x=None, y=None, kind='line', ax=None, subplots=False,

sharex=None, sharey=False, layout=None,figsize=None,

use_index=True, title=None, grid=None, legend=True,

style=None, logx=False, logy=False, loglog=False,

xticks=None, yticks=None, xlim=None, ylim=None, rot=None,

xerr=None,secondary_y=False, sort_columns=False, **kwds)

参数详解如下:

Parameters:

x : label or position, default None#指数据框列的标签或位置参数

y : label or position, default None

kind : str

‘line' : line plot (default)#折线图

‘bar' : vertical bar plot#条形图

‘barh' : horizontal bar plot#横向条形图

‘hist' : histogram#柱状图

‘box' : boxplot#箱线图

‘kde' : Kernel Density Estimation plot#Kernel 的密度估计图,主要对柱状图添加Kernel 概率密度线

‘density' : same as ‘kde'

‘area' : area plot#不了解此图

‘pie' : pie plot#饼图

‘scatter' : scatter plot#散点图 需要传入columns方向的索引

‘hexbin' : hexbin plot#不了解此图

ax : matplotlib axes object, default None#**子图(axes, 也可以理解成坐标轴) 要在其上进行绘制的matplotlib subplot对象。如果没有设置,则使用当前matplotlib subplot**其中,变量和函数通过改变figure和axes中的元素(例如:title,label,点和线等等)一起描述figure和axes,也就是在画布上绘图。

subplots : boolean, default False#判断图片中是否有子图

Make separate subplots for each column

sharex : boolean, default True if ax is None else False#如果有子图,子图共x轴刻度,标签

In case subplots=True, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in; Be aware, that passing in both an ax and sharex=True will alter all x axis labels for all axis in a figure!

sharey : boolean, default False#如果有子图,子图共y轴刻度,标签

In case subplots=True, share y axis and set some y axis labels to invisible

layout : tuple (optional)#子图的行列布局

(rows, columns) for the layout of subplots

figsize : a tuple (width, height) in inches#图片尺寸大小

use_index : boolean, default True#默认用索引做x轴

Use index as ticks for x axis

title : string#图片的标题用字符串

Title to use for the plot

grid : boolean, default None (matlab style default)#图片是否有网格

Axis grid lines

legend : False/True/'reverse'#子图的图例,添加一个subplot图例(默认为True)

Place legend on axis subplots

style : list or dict#对每列折线图设置线的类型

matplotlib line style per column

logx : boolean, default False#设置x轴刻度是否取对数

Use log scaling on x axis

logy : boolean, default False

Use log scaling on y axis

loglog : boolean, default False#同时设置x,y轴刻度是否取对数

Use log scaling on both x and y axes

xticks : sequence#设置x轴刻度值,序列形式(比如列表)

Values to use for the xticks

yticks : sequence#设置y轴刻度,序列形式(比如列表)

Values to use for the yticks

xlim : 2-tuple/list#设置坐标轴的范围,列表或元组形式

ylim : 2-tuple/list

rot : int, default None#设置轴标签(轴刻度)的显示旋转度数

Rotation for ticks (xticks for vertical, yticks for horizontal plots)

fontsize : int, default None#设置轴刻度的字体大小

Font size for xticks and yticks

colormap : str or matplotlib colormap object, default None#设置图的区域颜色

Colormap to select colors from. If string, load colormap with that name from matplotlib.

colorbar : boolean, optional #图片柱子

If True, plot colorbar (only relevant for ‘scatter' and ‘hexbin' plots)

position : float

Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)

layout : tuple (optional) #布局

(rows, columns) for the layout of the plot

table : boolean, Series or DataFrame, default False #如果为正,则选择DataFrame类型的数据并且转换匹配matplotlib的布局。

If True, draw a table using the data in the DataFrame and the data will be transposed to meet matplotlib's default layout. If a Series or DataFrame is passed, use passed data to draw a table.

yerr : DataFrame, Series, array-like, dict and str

See Plotting with Error Bars for detail.

xerr : same types as yerr.

stacked : boolean, default False in line and

bar plots, and True in area plot. If True, create stacked plot.

sort_columns : boolean, default False # 以字母表顺序绘制各列,默认使用前列顺序

secondary_y : boolean or sequence, default False ##设置第二个y轴(右y轴)

Whether to plot on the secondary y-axis If a list/tuple, which columns to plot on secondary y-axis

mark_right : boolean, default True

When using a secondary_y axis, automatically mark the column labels with “(right)” in the legend

kwds : keywords

Options to pass to matplotlib plotting method

Returns:axes : matplotlib.AxesSubplot or np.array of them

1、画图图形

import pandas as pd

from pandas import DataFrame,Series

df = pd.DataFrame(np.random.randn(4,4),index = list('ABCD'),columns=list('OPKL'))

df

Out[4]:

O P K L

A -1.736654 0.327206 -1.000506 1.235681

B 1.216879 0.506565 0.889197 -1.478165

C 0.091957 -2.677410 -0.973761 0.123733

D -1.114622 -0.600751 -0.159181 1.041668

python画函数点图_详解pandas.DataFrame.plot() 画图函数_第1张图片

注意一下散点图scatter是需要传入两个Y的columns参数的:

python画函数点图_详解pandas.DataFrame.plot() 画图函数_第2张图片

传入x,y参数

python画函数点图_详解pandas.DataFrame.plot() 画图函数_第3张图片

python画函数点图_详解pandas.DataFrame.plot() 画图函数_第4张图片

同时画多个子图,可以设置 subplot = True

python画函数点图_详解pandas.DataFrame.plot() 画图函数_第5张图片

2、注意事项:

- 在画图时,要注意首先定义画图的画布:fig = plt.figure( )

- 然后定义子图ax ,使用 ax= fig.add_subplot( 行,列,位置标)

- 当上述步骤完成后,可以用 ax.plot()函数或者 df.plot(ax = ax)

- 在jupternotebook 需要用%定义:%matplotlib notebook;如果是在脚本编译器上则不用,但是需要一次性按流程把代码写完;

- 结尾时都注意记录上plt.show()

python画函数点图_详解pandas.DataFrame.plot() 画图函数_第6张图片

到此这篇关于详解pandas.DataFrame.plot() 画图函数的文章就介绍到这了,更多相关pandas.DataFrame.plot( )画图内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

本文标题: 详解pandas.DataFrame.plot() 画图函数

本文地址: http://www.cppcns.com/jiaoben/python/319484.html

你可能感兴趣的:(python画函数点图)