- 人工智能学习资源
Hemy08
人工智能学习
无机器学习基础:https://www.coursera.org/learn/machine-learning有机器学习基础:MachineYearning深度学习入门:https://www.coursera.org/learn/neural-networks-deep-learning
- AI编程基础:学习Python是进入AI领域的必经之路(文末含学习路线与知识推荐)
Clf丶忆笙
AI人工智能开发全栈教程学习python人工智能ai
文章目录Python市场行情:AI开发的首选语言为什么学习Python对AI至关重要AI开发所需的Python知识体系Python编程基础科学计算与数据处理机器学习与深度学习性能优化与并行计算Python学习路线推荐阶段一:Python编程基础(1-2个月)阶段二:科学计算与数据处理(1-2个月)阶段三:机器学习基础(2-3个月)阶段四:深度学习与AI专项(3-6个月)阶段五:进阶与专项深化(持续
- 深度学习详解:通过案例了解机器学习基础
beist
深度学习机器学习人工智能
引言机器学习(MachineLearning,ML)和深度学习(DeepLearning,DL)是现代人工智能领域中的两个重要概念。通过让机器具备学习的能力,机器可以从数据中自动找到函数,并应用于各种任务,如语音识别、图像识别和游戏对战等。在这篇笔记中,我们将通过一个简单的案例,逐步了解机器学习的基础知识。1.1机器学习案例学习1.1.1回归问题与分类问题在机器学习中,根据所要解决的问题类型,任务
- AI Agent架构解析与工业级项目实战指南:核心框架与模块化实现
心跃程序
人工智能架构
AIAgent架构解析与工业级项目实战指南:核心框架与模块化实现近年来,AIAgent技术凭借其灵活的任务处理架构和多场景扩展能力,逐渐成为人工智能领域的技术焦点。本文基于主流框架源码与工业级项目实践,深度解析Agent系统的设计原理及实现路径,为开发者提供可落地的技术方案参考。技术体系与实战模块本内容涵盖从基础架构到高阶优化的全流程实现,适用于具备Python和机器学习基础的开发者:1.Agen
- Rust 机器学习
KENYCHEN奉孝
Rustrust机器学习开发语言
Rust机器学习Rust机器学习与深度学习现状Rust在机器学习(ML)和深度学习(DL)领域的生态仍处于早期阶段,但因其高性能、内存安全和并发优势,逐渐吸引开发者探索。以下从工具链、库和实际应用方向展开。机器学习(ML)笔记以下是关于机器学习(MachineLearning,ML)的详细学习集,涵盖核心概念、方法、工具和学习路径:机器学习基础概念机器学习是人工智能的子领域,通过算法让计算机从数据
- 【人工智能机器学习基础篇】——深入详解无监督学习之聚类,理解K-Means、层次聚类、数据分组和分类
猿享天开
人工智能数学基础专讲机器学习人工智能无监督学习聚类
深入详解无监督学习之聚类:如K-Means、层次聚类,理解数据分组和分类无监督学习是机器学习中的一个重要分支,旨在从未标注的数据中发现潜在的结构和模式。聚类(Clustering)作为无监督学习的核心任务之一,广泛应用于数据分组、模式识别和数据压缩等领域。本文将深入探讨两种常用的聚类算法:K-Means聚类和层次聚类,并详细解释它们在数据分组和分类中的应用。目录深入详解无监督学习之聚类:如K-Me
- Java机器学习全攻略:从基础原理到实战案例详解
cyc&阿灿
java机器学习开发语言
在当今AI驱动的技术浪潮中,机器学习已成为Java开发者必须掌握的核心技能之一。本文将系统性地介绍Java机器学习的原理基础、常用框架,并通过多个实战案例展示如何在实际项目中应用这些技术。无论你是刚接触机器学习的Java开发者,还是希望巩固基础的中级工程师,这篇文章都将为你提供全面而实用的指导。一、机器学习基础与Java生态1.1机器学习基本概念机器学习是人工智能的一个分支,它通过算法使计算机系统
- 机器学习基础相关问题
真的没有脑袋
算法面经汇总机器学习人工智能面试计算机视觉算法
机器学习相关的基础问题K-means是否一定会收敛K-means是否一定会收敛K-means算法在有限步数内一定会收敛,但收敛到的可能是局部最优解而非全局最优解。以下是详细分析:K-means的优化目标是最小化样本到其所归属簇中心的距离平方和(SSE,SumofSquaredErrors)。因此,每一次迭代都单调减小(或保持不变)损失函数,而SSE有下界(不能为负数),所以一定会收敛。在实际实现中
- 【机器学习基础】机器学习入门核心:Jaccard相似度 (Jaccard Index) 和 Pearson相似度 (Pearson Correlation)
白熊188
机器学习基础机器学习人工智能
机器学习入门核心:Jaccard相似度(JaccardIndex)和Pearson相似度(PearsonCorrelation)一、算法逻辑Jaccard相似度(JaccardIndex)**Pearson相似度(PearsonCorrelation)**二、算法原理与数学推导1.Jaccard相似度公式2.Pearson相似度公式三、模型评估中的角色相似度度量的评估重点在推荐系统中的评估四、应用
- 机器学习基础 - 分类模型之朴素贝叶斯
yousuotu
杂项机器学习分类人工智能
朴素贝叶斯文章目录朴素贝叶斯1.基本概念1.条件概率2.先验概率3.后验概率2.贝叶斯公式3.条件独立假设4.从机器学习视角理解朴素贝叶斯朴素贝叶斯中的三种模型1.多项式模型2.高斯模型3.伯努利模型QA1.朴素贝叶斯为何朴素?2.朴素贝叶斯分类中某个类别的概率为0怎么办?3.朴素贝叶斯的要求是什么?4.朴素贝叶斯的优缺点?5.朴素贝叶斯与LR区别?1.基本概念1.条件概率P(X∣Y)=P(X,Y
- 亚远景-AI 快速入门与ML-SPICE标准引入课程
亚远景aspice
人工智能
本课程为AI快速入门与ML-SPICE标准引入,用1天时间深度解锁汽车行业「ML-SPICE标准框架+工具链+合规要求」三位一体落地路径,助您跨越从理论认知到产线部署的鸿沟。课程内容:模块1:AI战略与基础1.AI驱动的商业价值机器学习在汽车/制造行业的核心应用场景企业AI转型的3大关键成功要素2.ML机器学习基础核心概念:监督学习/无监督学习/强化学习模型架构概览:CNN、Transformer
- 【机器学习基础】机器学习入门核心算法:K-近邻算法(K-Nearest Neighbors, KNN)
白熊188
机器学习基础python算法机器学习近邻算法
机器学习入门核心算法:K-近邻算法(K-NearestNeighbors,KNN)一、算法逻辑1.1基本概念1.2关键要素距离度量K值选择二、算法原理与数学推导2.1分类任务2.2回归任务2.3时间复杂度分析三、模型评估3.1评估指标3.2交叉验证调参四、应用案例4.1手写数字识别4.2推荐系统五、经典面试题问题1:KNN的主要优缺点?问题2:如何处理高维数据?问题3:KNN与K-Means的区别
- NLP学习路线(自用)
�猫薄荷武士�
自然语言处理学习人工智能
NLP学习路线规划(从基础到科研)你的目标是申请NUSNLP方向的PhD,所以NLP学习路线不仅要涵盖基础知识,还要逐步深入到前沿技术、论文阅读、实验复现和科研能力提升。这里我给你一个完整的学习路径,帮助你高效构建NLP知识体系,并逐步积累科研能力。学习路线总览阶段1(基础)-计算机科学&机器学习基础阶段2(核心)-传统NLP技术&深度学习NLP阶段3(进阶)-Transformer&预训练模型(
- NLP学习路线图(八):常见算法-线性回归、逻辑回归、决策树
摸鱼许可证
NLP学习路线图自然语言处理nlp
引言:当机器学习遇见自然语言自然语言处理(NaturalLanguageProcessing,NLP)作为人工智能皇冠上的明珠,正在深刻改变人机交互的方式。从智能客服到机器翻译,从情感分析到文本生成,NLP技术的突破都建立在坚实的机器学习基础之上。本文将深入剖析机器学习核心算法,揭示这些"传统"方法在NLP领域的独特价值,为开发者构建完整的AI知识体系提供关键路径。第一部分机器学习基础与核心算法1
- 机器学习--特征工程具体案例
lucky_lyovo
机器学习人工智能
一、数据集介绍sklearn库中的玩具数据集,葡萄酒数据集。在前两次发布的内容《机器学习基础中》有介绍。1.1葡萄酒列标签名:wine.feature_names结果:['alcohol','malic_acid','ash','alcalinity_of_ash','magnesium','total_phenols','flavanoids','nonflavanoid_phenols','p
- 26备战秋招day17——机器学习基础
如意鼠
26秋招机器学习人工智能
机器学习入门指南:常见算法详解与代码实现机器学习(MachineLearning,ML)是人工智能(AI)的一个重要分支,旨在通过数据驱动的方法让计算机系统自动学习和改进。对于刚接触机器学习的朋友来说,了解各种算法的基本原理及其实现方法至关重要。本篇文章将通俗易懂地介绍几种常见的机器学习算法,解释其背后的数学原理,并提供简单的代码示例,帮助你更好地理解这些算法的工作机制。目录什么是机器学习?监督学
- 机器学习基础概念详解:从入门到应用
烂蜻蜓
机器学习人工智能python深度学习
在机器学习领域,掌握基础概念是理解复杂模型和应用场景的关键。本文将以简洁的方式介绍机器学习的核心概念,帮助读者快速构建知识框架。一、数据集的划分:训练集、验证集与测试集1.训练集(TrainingSet)用途:用于模型训练,通过调整模型参数学习数据规律特点:通常占数据总量的60-70%示例:用历史房价数据训练模型预测未来价格2.验证集(ValidationSet)核心作用:模型调优与超参数选择应用
- 【机器学习基础】鸢尾花的分类 - 机器学习领域的Hello World
维他命C++
机器学习基础机器学习分类人工智能
1项目简介【背景】假设有一名植物学爱好者对她发现的鸢尾花的品种很感兴趣。她收集了每朵鸢尾花的一些测量数据:花瓣的长度和宽度以及花萼的长度和宽度,所有测量结果的单位都是厘米。她还有一些鸢尾花的测量数据,这些花之前已经被植物学专家鉴定为属于setosa、versicolor或virginica三个品种之一。对于这些测量数据,她可以确定每朵鸢尾花所属的品种。【目标】构建一个机器学习模型,可以从上述已知品
- 机器学习基础算法11-鸢尾花数据集分析-PCA主成分分析与logistic回归(管道分析)
qq_42749341
机器学习-基础知识
目录数据集介绍PCA主成分分析1.基本原理2.代码实现逻辑回归-管道-Pipeline代码模型泛化能力分析数据集介绍鸢尾花数据集有三个类别,每个类别有50个样本。其中一个类别与另外两个线性可分,另外两个不能线性可分。PCA主成分分析1.基本原理在统计学中,主成分分析PCA是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为
- 机器学习实操 第一部分 机器学习基础 第6章 决策树
odoo中国
人工智能机器学习决策树人工智能
机器学习实操第一部分机器学习基础第6章决策树内容概要第6章深入介绍了决策树,这是一种功能强大的机器学习算法,能够处理分类、回归以及多输出任务。决策树通过递归地分割数据集来构建模型,具有易于解释和可视化的特点。本章详细讲解了决策树的训练算法、正则化方法以及在不同任务中的应用。通过理论和实践相结合的方式,读者将掌握如何使用决策树解决实际问题。主要内容决策树的训练与可视化构建决策树:使用CART算法训练
- 机器学习实操 第一部分 机器学习基础 第5章 支持向量机(SVM)
odoo中国
人工智能机器学习支持向量机人工智能
机器学习实操第一部分机器学习基础第5章支持向量机(SVM)内容概要第5章深入介绍了支持向量机(SVM),这是一种功能强大且应用广泛的机器学习模型。SVM适用于线性或非线性分类、回归以及noveltydetection。本章详细讲解了SVM的核心概念、训练方法以及在不同任务中的应用。通过理论和实践相结合的方式,读者将掌握如何使用SVM解决实际问题。主要内容线性SVM分类硬间隔分类:在数据线性可分的情
- 深度学习-学习笔记 DAY-1 (机器学习基础-案例学习)
gzj123。。
深度学习
本系列的学习笔记基础为李宏毅老师的《深度学习教程》,希望可以和大家一起共攀深度学习的大山,本教程干货满满,希望和我一起探索深度学习的宝子们收藏起来吧!!!案例:以视频的点击次数预测为例介绍下机器学习的运作过程。假设有人想要通过视频平台赚钱,他会在意频道有没有流量,这样他才会知道他的获利。假设后台可以看到很多相关的信息,比如:每天点赞的人数、订阅人数、观看次数。根据一个频道过往所有的信息可以预测明天
- 机器学习基础理论 - 偏差 vs 方差,欠拟合 vs 过拟合
yousuotu
面试题机器学习人工智能
定义记在训练集D上学得的模型为f(x;D)模型的期望预测为$$\hat{f}(x)=E_D[f(x;D)]$$偏差(Bias)$$bias^2(x)=(\hat{f}(x)-y)^2$$偏差度量了学习算法的期望预测与真实结果的偏离程度,即刻画了学习算法本身的拟合能力;方差(Variance)$$var(x)=E_D[(f(x;D)-\hat{f}(x))^2]$$方差度量了同样大小的训练集的变动所
- 机器学习基础理论 - 分类问题评估指标
yousuotu
面试题机器学习算法人工智能
几个定义:混淆矩阵TP:TruePositives,表示实际为正例且被分类器判定为正例的样本数FP:FalsePositives,表示实际为负例且被分类器判定为正例的样本数FN:FalseNegatives,表示实际为正例但被分类器判定为负例的样本数TN:TrueNegatives,表示实际为负例且被分类器判定为负例的样本数一个小技巧,第一个字母表示划分正确与否,T表示判定正确(判定正确),F表示
- 机器学习基础 - 回归模型之线性回归
yousuotu
面试题机器学习回归线性回归
机器学习:线性回归文章目录机器学习:线性回归1.线性回归1.简介2.线性回归如何训练?1.损失函数2.正规方程3.梯度下降法4.两种方法的比较2.岭回归岭回归与线性回归3.Lasso回归4.ElasticNet回归LWR-局部加权回归QA1.最小二乘法估计2.最小二乘法的几何解释3.从概率角度看最小二乘法4.推一下线性回归的反向传播5.什么时候使用岭回归?6.什么时候使用L1正则化?7.什么时候使
- 【人工智能机器学习基础篇】——深入详解监督学习之模型评估:掌握评估指标(准确率、精确率、召回率、F1分数等)和交叉验证技术
猿享天开
人工智能数学基础专讲人工智能机器学习深度学习
深入详解监督学习之模型评估在监督学习中,模型评估是衡量模型性能的关键步骤。有效的模型评估不仅能帮助我们理解模型在训练数据上的表现,更重要的是评估其在未见数据上的泛化能力。本文将深入探讨监督学习中的模型评估方法,重点介绍评估指标(准确率、精确率、召回率、F1分数等)和交叉验证技术,并通过示例代码帮助读者更好地理解和应用这些概念。目录模型评估的重要性评估指标详解准确率(Accuracy)精确率(Pre
- 2023-2024山东大学机器学习期末回忆
Walk Me Home
机器学习人工智能
1、考试时间:2024/6/122、考试形式:闭卷3、考试科目:机器学习基础(老师:XuXinShun)一、名词解释1、聚类2、集成学习3、回归4、维度灾难5、主动学习二、简答题1、非参数估计相比参数估计有什么优点。说出两种非参数估计的方法,并解释他们的基本思想。2、梯度下降法的过程,并解释为什么每一步目标函数的值每次都是降低3、解释什么是过拟合,并给出解决过拟合的几种方法4、简述决策树算法的过程
- 山东大学软件学院2023-2024二学期机器学习基础考试题回忆版
卑微小亮°
机器学习
一名词解释聚类集成学习回归维度灾难主动学习二简答题1非参数估计比着有参数估计的优点?阐述两个非参数估计的基本思想2阐述梯度下降的主要过程?证明为什么梯度下降每次目标函数值都会减小3什么是过拟合?有什么减少过拟合的方法?4阐述决策树的基本思想,说明ID3的实现过程三综合分析题1用w和b表示svm的初始式子2从最小化结构风险的角度阐述为什么要最大化margin3写出引入拉格朗日乘子后svm的对偶形式的
- 从基础概念到前沿应用了解机器学习
AI大模型团团
机器学习人工智能aillama线性回归随机森林python
一、机器学习基础概念1.机器学习定义与核心价值机器学习是人工智能的重要分支,通过算法让计算机系统能够从数据中自动学习并改进性能。其核心价值在于:自动化决策:无需显式编程即可完成复杂任务持续进化:随着数据积累不断优化表现模式发现:从海量数据中识别人类难以察觉的规律2.三大学习范式对比学习类型数据需求算法示例典型应用场景监督学习标注数据SVM、随机森林垃圾邮件过滤、房价预测无监督学习无标注数据K-me
- 机器学习KNN算法
zhglhy
机器学习算法人工智能
K-最近邻算法(KNN)——机器学习基础K-最近邻算法(K-NearestNeighbors,KNN)是一种简单而强大的监督学习算法,可用于分类和回归任务。它的核心思想是:相似的数据点往往具有相似的输出值。1.KNN的核心原理KNN是一种基于实例的学习(Instance-BasedLearning),也称为惰性学习(LazyLearning),因为它不会在训练阶段构建显式模型,而是在预测时直接计算
- Spring的注解积累
yijiesuifeng
spring注解
用注解来向Spring容器注册Bean。
需要在applicationContext.xml中注册:
<context:component-scan base-package=”pagkage1[,pagkage2,…,pagkageN]”/>。
如:在base-package指明一个包
<context:component-sc
- 传感器
百合不是茶
android传感器
android传感器的作用主要就是来获取数据,根据得到的数据来触发某种事件
下面就以重力传感器为例;
1,在onCreate中获得传感器服务
private SensorManager sm;// 获得系统的服务
private Sensor sensor;// 创建传感器实例
@Override
protected void
- [光磁与探测]金吕玉衣的意义
comsci
这是一个古代人的秘密:现在告诉大家
信不信由你们:
穿上金律玉衣的人,如果处于灵魂出窍的状态,可以飞到宇宙中去看星星
这就是为什么古代
- 精简的反序打印某个数
沐刃青蛟
打印
以前看到一些让求反序打印某个数的程序。
比如:输入123,输出321。
记得以前是告诉你是几位数的,当时就抓耳挠腮,完全没有思路。
似乎最后是用到%和/方法解决的。
而今突然想到一个简短的方法,就可以实现任意位数的反序打印(但是如果是首位数或者尾位数为0时就没有打印出来了)
代码如下:
long num, num1=0;
- PHP:6种方法获取文件的扩展名
IT独行者
PHP扩展名
PHP:6种方法获取文件的扩展名
1、字符串查找和截取的方法
1
$extension
=
substr
(
strrchr
(
$file
,
'.'
), 1);
2、字符串查找和截取的方法二
1
$extension
=
substr
- 面试111
文强chu
面试
1事务隔离级别有那些 ,事务特性是什么(问到一次)
2 spring aop 如何管理事务的,如何实现的。动态代理如何实现,jdk怎么实现动态代理的,ioc是怎么实现的,spring是单例还是多例,有那些初始化bean的方式,各有什么区别(经常问)
3 struts默认提供了那些拦截器 (一次)
4 过滤器和拦截器的区别 (频率也挺高)
5 final,finally final
- XML的四种解析方式
小桔子
domjdomdom4jsax
在平时工作中,难免会遇到把 XML 作为数据存储格式。面对目前种类繁多的解决方案,哪个最适合我们呢?在这篇文章中,我对这四种主流方案做一个不完全评测,仅仅针对遍历 XML 这块来测试,因为遍历 XML 是工作中使用最多的(至少我认为)。 预 备 测试环境: AMD 毒龙1.4G OC 1.5G、256M DDR333、Windows2000 Server
- wordpress中常见的操作
aichenglong
中文注册wordpress移除菜单
1 wordpress中使用中文名注册解决办法
1)使用插件
2)修改wp源代码
进入到wp-include/formatting.php文件中找到
function sanitize_user( $username, $strict = false
- 小飞飞学管理-1
alafqq
管理
项目管理的下午题,其实就在提出问题(挑刺),分析问题,解决问题。
今天我随意看下10年上半年的第一题。主要就是项目经理的提拨和培养。
结合我自己经历写下心得
对于公司选拔和培养项目经理的制度有什么毛病呢?
1,公司考察,选拔项目经理,只关注技术能力,而很少或没有关注管理方面的经验,能力。
2,公司对项目经理缺乏必要的项目管理知识和技能方面的培训。
3,公司对项目经理的工作缺乏进行指
- IO输入输出部分探讨
百合不是茶
IO
//文件处理 在处理文件输入输出时要引入java.IO这个包;
/*
1,运用File类对文件目录和属性进行操作
2,理解流,理解输入输出流的概念
3,使用字节/符流对文件进行读/写操作
4,了解标准的I/O
5,了解对象序列化
*/
//1,运用File类对文件目录和属性进行操作
//在工程中线创建一个text.txt
- getElementById的用法
bijian1013
element
getElementById是通过Id来设置/返回HTML标签的属性及调用其事件与方法。用这个方法基本上可以控制页面所有标签,条件很简单,就是给每个标签分配一个ID号。
返回具有指定ID属性值的第一个对象的一个引用。
语法:
&n
- 励志经典语录
bijian1013
励志人生
经典语录1:
哈佛有一个著名的理论:人的差别在于业余时间,而一个人的命运决定于晚上8点到10点之间。每晚抽出2个小时的时间用来阅读、进修、思考或参加有意的演讲、讨论,你会发现,你的人生正在发生改变,坚持数年之后,成功会向你招手。不要每天抱着QQ/MSN/游戏/电影/肥皂剧……奋斗到12点都舍不得休息,看就看一些励志的影视或者文章,不要当作消遣;学会思考人生,学会感悟人生
- [MongoDB学习笔记三]MongoDB分片
bit1129
mongodb
MongoDB的副本集(Replica Set)一方面解决了数据的备份和数据的可靠性问题,另一方面也提升了数据的读写性能。MongoDB分片(Sharding)则解决了数据的扩容问题,MongoDB作为云计算时代的分布式数据库,大容量数据存储,高效并发的数据存取,自动容错等是MongoDB的关键指标。
本篇介绍MongoDB的切片(Sharding)
1.何时需要分片
&nbs
- 【Spark八十三】BlockManager在Spark中的使用场景
bit1129
manager
1. Broadcast变量的存储,在HttpBroadcast类中可以知道
2. RDD通过CacheManager存储RDD中的数据,CacheManager也是通过BlockManager进行存储的
3. ShuffleMapTask得到的结果数据,是通过FileShuffleBlockManager进行管理的,而FileShuffleBlockManager最终也是使用BlockMan
- yum方式部署zabbix
ronin47
yum方式部署zabbix
安装网络yum库#rpm -ivh http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-2.4-1.el6.noarch.rpm 通过yum装mysql和zabbix调用的插件还有agent代理#yum install zabbix-server-mysql zabbix-web-mysql mysql-
- Hibernate4和MySQL5.5自动创建表失败问题解决方法
byalias
J2EEHibernate4
今天初学Hibernate4,了解了使用Hibernate的过程。大体分为4个步骤:
①创建hibernate.cfg.xml文件
②创建持久化对象
③创建*.hbm.xml映射文件
④编写hibernate相应代码
在第四步中,进行了单元测试,测试预期结果是hibernate自动帮助在数据库中创建数据表,结果JUnit单元测试没有问题,在控制台打印了创建数据表的SQL语句,但在数据库中
- Netty源码学习-FrameDecoder
bylijinnan
javanetty
Netty 3.x的user guide里FrameDecoder的例子,有几个疑问:
1.文档说:FrameDecoder calls decode method with an internally maintained cumulative buffer whenever new data is received.
为什么每次有新数据到达时,都会调用decode方法?
2.Dec
- SQL行列转换方法
chicony
行列转换
create table tb(终端名称 varchar(10) , CEI分值 varchar(10) , 终端数量 int)
insert into tb values('三星' , '0-5' , 74)
insert into tb values('三星' , '10-15' , 83)
insert into tb values('苹果' , '0-5' , 93)
- 中文编码测试
ctrain
编码
循环打印转换编码
String[] codes = {
"iso-8859-1",
"utf-8",
"gbk",
"unicode"
};
for (int i = 0; i < codes.length; i++) {
for (int j
- hive 客户端查询报堆内存溢出解决方法
daizj
hive堆内存溢出
hive> select * from t_test where ds=20150323 limit 2;
OK
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
问题原因: hive堆内存默认为256M
这个问题的解决方法为:
修改/us
- 人有多大懒,才有多大闲 (评论『卓有成效的程序员』)
dcj3sjt126com
程序员
卓有成效的程序员给我的震撼很大,程序员作为特殊的群体,有的人可以这么懒, 懒到事情都交给机器去做 ,而有的人又可以那么勤奋,每天都孜孜不倦得做着重复单调的工作。
在看这本书之前,我属于勤奋的人,而看完这本书以后,我要努力变成懒惰的人。
不要在去庞大的开始菜单里面一项一项搜索自己的应用程序,也不要在自己的桌面上放置眼花缭乱的快捷图标
- Eclipse简单有用的配置
dcj3sjt126com
eclipse
1、显示行号 Window -- Prefences -- General -- Editors -- Text Editors -- show line numbers
2、代码提示字符 Window ->Perferences,并依次展开 Java -> Editor -> Content Assist,最下面一栏 auto-Activation
- 在tomcat上面安装solr4.8.0全过程
eksliang
Solrsolr4.0后的版本安装solr4.8.0安装
转载请出自出处:
http://eksliang.iteye.com/blog/2096478
首先solr是一个基于java的web的应用,所以安装solr之前必须先安装JDK和tomcat,我这里就先省略安装tomcat和jdk了
第一步:当然是下载去官网上下载最新的solr版本,下载地址
- Android APP通用型拒绝服务、漏洞分析报告
gg163
漏洞androidAPP分析
点评:记得曾经有段时间很多SRC平台被刷了大量APP本地拒绝服务漏洞,移动安全团队爱内测(ineice.com)发现了一个安卓客户端的通用型拒绝服务漏洞,来看看他们的详细分析吧。
0xr0ot和Xbalien交流所有可能导致应用拒绝服务的异常类型时,发现了一处通用的本地拒绝服务漏洞。该通用型本地拒绝服务可以造成大面积的app拒绝服务。
针对序列化对象而出现的拒绝服务主要
- HoverTree项目已经实现分层
hvt
编程.netWebC#ASP.ENT
HoverTree项目已经初步实现分层,源代码已经上传到 http://hovertree.codeplex.com请到SOURCE CODE查看。在本地用SQL Server 2008 数据库测试成功。数据库和表请参考:http://keleyi.com/a/bjae/ue6stb42.htmHoverTree是一个ASP.NET 开源项目,希望对你学习ASP.NET或者C#语言有帮助,如果你对
- Google Maps API v3: Remove Markers 移除标记
天梯梦
google maps api
Simply do the following:
I. Declare a global variable:
var markersArray = [];
II. Define a function:
function clearOverlays() {
for (var i = 0; i < markersArray.length; i++ )
- jQuery选择器总结
lq38366
jquery选择器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
- 基础数据结构和算法六:Quick sort
sunwinner
AlgorithmQuicksort
Quick sort is probably used more widely than any other. It is popular because it is not difficult to implement, works well for a variety of different kinds of input data, and is substantially faster t
- 如何让Flash不遮挡HTML div元素的技巧_HTML/Xhtml_网页制作
刘星宇
htmlWeb
今天在写一个flash广告代码的时候,因为flash自带的链接,容易被当成弹出广告,所以做了一个div层放到flash上面,这样链接都是a触发的不会被拦截,但发现flash一直处于div层上面,原来flash需要加个参数才可以。
让flash置于DIV层之下的方法,让flash不挡住飘浮层或下拉菜单,让Flash不档住浮动对象或层的关键参数:wmode=opaque。
方法如下:
- Mybatis实用Mapper SQL汇总示例
wdmcygah
sqlmysqlmybatis实用
Mybatis作为一个非常好用的持久层框架,相关资料真的是少得可怜,所幸的是官方文档还算详细。本博文主要列举一些个人感觉比较常用的场景及相应的Mapper SQL写法,希望能够对大家有所帮助。
不少持久层框架对动态SQL的支持不足,在SQL需要动态拼接时非常苦恼,而Mybatis很好地解决了这个问题,算是框架的一大亮点。对于常见的场景,例如:批量插入/更新/删除,模糊查询,多条件查询,联表查询,