深度学习算法中,并没有过多的局部最优点,且局部最优的问题很好解决。
梯度下降要用到上一个w,但是每个点的梯度是固定的,所以梯度的计算可以并行。
效率较高(时间复杂度较低),学习性能较差。
import matplotlib.pyplot as plt
# prepare the training set
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
# initial guess of weight
w = 1.0
# define the model linear model y = w*x
def forward(x):
return x * w
# define the cost function MSE
def cost(xs, ys):
cost = 0
for x, y in zip(xs, ys):
y_pred = forward(x)
cost += (y_pred - y) ** 2
return cost / len(xs)
# define the gradient function gd
def gradient(xs, ys):
grad = 0
for x, y in zip(xs, ys):
grad += 2 * x * (x * w - y)
return grad / len(xs)
epoch_list = []
cost_list = []
print('predict (before training)', 4, forward(4))
for epoch in range(100):
cost_val = cost(x_data, y_data)
grad_val = gradient(x_data, y_data)
w -= 0.01 * grad_val # 0.01 learning rate
print('epoch:', epoch, 'w=', w, 'loss=', cost_val)
epoch_list.append(epoch)
cost_list.append(cost_val)
print('predict (after training)', 4, forward(4))
plt.plot(epoch_list, cost_list)
plt.ylabel('cost')
plt.xlabel('epoch')
plt.show()
梯度下降法———N个里面随机选一个————>随机梯度下降
==>即使陷入鞍点,随机噪声可能会把我们向前推动
随机梯度下降也要用到上一个w,但是每个点的梯度是随机的,所以梯度的计算不可以并行。
随机梯度下降也不是完全不可以,只要保证更新w的时候线程安全即可。
随机梯度下降法在神经网络中被证明是有效的。效率较低(时间复杂度较高),学习性能较好。
import matplotlib.pyplot as plt
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
w = 1.0
def forward(x):
return x * w
# calculate loss function
def loss(x, y):
y_pred = forward(x)
return (y_pred - y) ** 2
# define the gradient function sgd
def gradient(x, y):
return 2 * x * (x * w - y)
epoch_list = []
loss_list = []
print('predict (before training)', 4, forward(4))
for epoch in range(100):
for x, y in zip(x_data, y_data):
grad = gradient(x, y)
w = w - 0.01 * grad # update weight by every grad of sample of training set
print("\tgrad:", x, y, grad)
l = loss(x, y)
print("progress:", epoch, "w=", w, "loss=", l)
epoch_list.append(epoch)
loss_list.append(l)
print('predict (after training)', 4, forward(4))
plt.plot(epoch_list, loss_list)
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()
梯度下降法效率较高(时间复杂度较低),学习性能较差;随机梯度下降法效率较低(时间复杂度较高),学习性能较好。所以引入batch(mini batch),将随机梯度下降的样本分为小批量的、一组一组的。