关于运行DynaSLAM源码这档子事(OpenCV3.x版)

好的,又来到了一篇源码运行记录← ←


一. 基础环境

根据作者源码Readme文件,必须需要有Python2.7,后续我装tensorflow什么都是在Anaconda建立的一个虚拟环境下弄的。这篇记录是对于OpenCV 3.x的版本的!对于3.x的版本的修改在第四大点,前面都是通用的部分。

二. 满足能编译ORB-SLAM2的条件

因为这个源码是基于ORB-SLAM2写的,所以当然要满足一些预备条件,需要预先安装一些库比如C++11 or C++0x Compiler, Pangolin, OpenCV and Eigen3,如果不知道怎么装,可以再手动搜索一下。DynaSLAM刚出时只能支持OpenCV2.4.11,不过19年有热心人提交了可以支持Opencv3.x的代码,后面我们再详细说。我自己装的是OpenCV 3.4.5

三. 编译DynaSLAM前需要安装的其他库

按照开源代码的Readme文件:

1. 安装boost库

sudo apt-get install libboost-all-dev

2. 下载DynaSLAM源码并放入h5文件

git clone https://github.com/BertaBescos/DynaSLAM.git
然后从这个页面https://github.com/matterport/Mask_RCNN/releases下载h5文件,把文件存到DynaSLAM/src/python/关于运行DynaSLAM源码这档子事(OpenCV3.x版)_第1张图片

3.Python相关的环境

这里先在Anaconda创建一个新的虚拟环境并激活,然后在虚拟环境中依次安装tensorflow和keras。

conda create -n MaskRCNN python=2.7
conda activate MaskRCNN
pip install tensorflow==1.14.0  #或者 pip install tensorflow-gpu==1.14.0
pip install keras==2.0.9

完成上面的步骤后,python的环境差不多就弄好了,下面可以测试一下

cd DynaSLAM
python src/python/Check.py

如果输出为Mask R-CNN is correctly working,就可以下一步了。然而,事情很难这么顺利哈哈哈,那么就一一解决。我这里碰到了两个问题:

3.1 没有安装scikit-image

sudo pip install scikit-image

3.2 关于pycocotools的报错

注意!这里一定要在Python2.7(cocoapi只支持Python2)的时候进行安装!否则运行Check.py的时候会报错找不到_mask, 因为Python3运行的话就不会生成_mask.so这个文件。

git clone https://github.com/waleedka/coco 
python PythonAPI/setup.py build_ext install

运行完上面指令之后就把pycocotools文件夹整个复制到src/python/下,像这样:
关于运行DynaSLAM源码这档子事(OpenCV3.x版)_第2张图片

四. 修改部分DynaSLAM源码

这里非常感谢这个小姐姐(?),原地址在这里:Pushyami_dev,如果想看看代码具体增删了哪些可以点进去看看。
提交的代码主要是针对Opencv3的使用做出了一些修改,然后在这个代码的基础上,去掉CMakeLists.txt中的-march=native(会出现Segment Default报错),/Thirdparty/DBoW2中的记得也要去一下。代码主要在以下部分做了修改,直接整个复制到文件夹里就行,注意修改一下自己OpenCV3.x的版本。

  • CMakeLists.txt
  • Thirdparty/DBoW2/CMakeLists.txt
  • include/Conversion.h
  • src/Conversion.cc

1. CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(DynaSLAM)

IF(NOT CMAKE_BUILD_TYPE)
  SET(CMAKE_BUILD_TYPE Release)
  # SET(CMAKE_BUILD_TYPE Debug)
ENDIF()

MESSAGE("Build type: " ${CMAKE_BUILD_TYPE})

#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS}  -Wall  -O3 -march=native ")
#set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall   -O3 -march=native")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS}  -Wall  -O3  ")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall   -O3 ")
# This is required if opencv is built from source locally
#SET(OpenCV_DIR "~/opencv/build")

# set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS}  -Wall  -O0 -march=native ")
# set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall   -O0 -march=native")

# Check C++11 or C++0x support
include(CheckCXXCompilerFlag)
CHECK_CXX_COMPILER_FLAG("-std=c++11" COMPILER_SUPPORTS_CXX11)
CHECK_CXX_COMPILER_FLAG("-std=c++0x" COMPILER_SUPPORTS_CXX0X)
if(COMPILER_SUPPORTS_CXX11)
   set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
   add_definitions(-DCOMPILEDWITHC11)
   message(STATUS "Using flag -std=c++11.")
elseif(COMPILER_SUPPORTS_CXX0X)
   set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++0x")
   add_definitions(-DCOMPILEDWITHC0X)
   message(STATUS "Using flag -std=c++0x.")
else()
   message(FATAL_ERROR "The compiler ${CMAKE_CXX_COMPILER} has no C++11 support. Please use a different C++ compiler.")
endif()

LIST(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake_modules)

set(Python_ADDITIONAL_VERSIONS "2.7")
#This is to avoid detecting python 3
find_package(PythonLibs 2.7 EXACT REQUIRED)
if (NOT PythonLibs_FOUND)
    message(FATAL_ERROR "PYTHON LIBS not found.")
else()
    message("PYTHON LIBS were found!")
    message("PYTHON LIBS DIRECTORY: " ${PYTHON_LIBRARY} ${PYTHON_INCLUDE_DIRS})
endif()

message("PROJECT_SOURCE_DIR: " ${OpenCV_DIR})
find_package(OpenCV 3.4 QUIET)
if(NOT OpenCV_FOUND)
    find_package(OpenCV 2.4 QUIET)
    if(NOT OpenCV_FOUND)
        message(FATAL_ERROR "OpenCV > 2.4.x not found.")
    endif()
endif()

find_package(Qt5Widgets REQUIRED)
find_package(Qt5Concurrent REQUIRED)
find_package(Qt5OpenGL REQUIRED)
find_package(Qt5Test REQUIRED)

find_package(Boost REQUIRED COMPONENTS thread)
if(Boost_FOUND)
    message("Boost was found!")
    message("Boost Headers DIRECTORY: " ${Boost_INCLUDE_DIRS})
    message("Boost LIBS DIRECTORY: " ${Boost_LIBRARY_DIRS})
    message("Found Libraries: " ${Boost_LIBRARIES})
endif()

find_package(Eigen3 3.1.0 REQUIRED)
find_package(Pangolin REQUIRED)

set(PYTHON_INCLUDE_DIRS ${PYTHON_INCLUDE_DIRS} /usr/local/lib/python2.7/dist-packages/numpy/core/include/numpy)

include_directories(
${PROJECT_SOURCE_DIR}
${PROJECT_SOURCE_DIR}/include
${EIGEN3_INCLUDE_DIR}
${Pangolin_INCLUDE_DIRS}
${PYTHON_INCLUDE_DIRS}
/usr/include/python2.7/
#/usr/lib/python2.7/dist-packages/numpy/core/include/numpy/
${Boost_INCLUDE_DIRS}
)
message("PROJECT_SOURCE_DIR: " ${PROJECT_SOURCE_DIR})
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${PROJECT_SOURCE_DIR}/lib)

add_library(${PROJECT_NAME} SHARED
src/System.cc
src/Tracking.cc
src/LocalMapping.cc
src/LoopClosing.cc
src/ORBextractor.cc
src/ORBmatcher.cc
src/FrameDrawer.cc
src/Converter.cc
src/MapPoint.cc
src/KeyFrame.cc
src/Map.cc
src/MapDrawer.cc
src/Optimizer.cc
src/PnPsolver.cc
src/Frame.cc
src/KeyFrameDatabase.cc
src/Sim3Solver.cc
src/Initializer.cc
src/Viewer.cc
src/Conversion.cc
src/MaskNet.cc
src/Geometry.cc
)

target_link_libraries(${PROJECT_NAME}
${OpenCV_LIBS}
${EIGEN3_LIBS}
${Pangolin_LIBRARIES}
${PROJECT_SOURCE_DIR}/Thirdparty/DBoW2/lib/libDBoW2.so
${PROJECT_SOURCE_DIR}/Thirdparty/g2o/lib/libg2o.so
/usr/lib/x86_64-linux-gnu/libpython2.7.so
${Boost_LIBRARIES}
)

# Build examples

set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${PROJECT_SOURCE_DIR}/Examples/RGB-D)

add_executable(rgbd_tum
Examples/RGB-D/rgbd_tum.cc)
target_link_libraries(rgbd_tum ${PROJECT_NAME})

set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${PROJECT_SOURCE_DIR}/Examples/Stereo)

add_executable(stereo_kitti
Examples/Stereo/stereo_kitti.cc)
target_link_libraries(stereo_kitti ${PROJECT_NAME})

set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${PROJECT_SOURCE_DIR}/Examples/Monocular)

add_executable(mono_tum
Examples/Monocular/mono_tum.cc)
target_link_libraries(mono_tum ${PROJECT_NAME})

2.Thirdparty/DBoW2/CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(DBoW2)

#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS}  -Wall  -O3 -march=native ")
#set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall  -O3 -march=native")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS}  -Wall  -O3 ")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall  -O3 ")

set(HDRS_DBOW2
  DBoW2/BowVector.h
  DBoW2/FORB.h 
  DBoW2/FClass.h       
  DBoW2/FeatureVector.h
  DBoW2/ScoringObject.h   
  DBoW2/TemplatedVocabulary.h)
set(SRCS_DBOW2
  DBoW2/BowVector.cpp
  DBoW2/FORB.cpp      
  DBoW2/FeatureVector.cpp
  DBoW2/ScoringObject.cpp)

set(HDRS_DUTILS
  DUtils/Random.h
  DUtils/Timestamp.h)
set(SRCS_DUTILS
  DUtils/Random.cpp
  DUtils/Timestamp.cpp)

find_package(OpenCV 3.4 QUIET)
if(NOT OpenCV_FOUND)
   find_package(OpenCV 2.4.3 QUIET)
   if(NOT OpenCV_FOUND)
      message(FATAL_ERROR "OpenCV > 2.4.3 not found.")
   endif()
endif()

set(LIBRARY_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/lib)

include_directories(${OpenCV_INCLUDE_DIRS})
add_library(DBoW2 SHARED ${SRCS_DBOW2} ${SRCS_DUTILS})
target_link_libraries(DBoW2 ${OpenCV_LIBS})

3.include/Conversion.h

/**
* This file is part of DynaSLAM.
* Copyright (C) 2018 Berta Bescos  (University of Zaragoza)
* For more information see .
*
*/


#ifndef CONVERSION_H_

#define CONVERSION_H_

#include 
#include 
#include 
#include 
#include "numpy/ndarrayobject.h"
// #include "__multiarray_api.h"

#define NUMPY_IMPORT_ARRAY_RETVAL

namespace DynaSLAM
{

static PyObject* opencv_error = 0;

static int failmsg(const char *fmt, ...);

class PyAllowThreads;

class PyEnsureGIL;

#define ERRWRAP2(expr) \
try \
{ \
    PyAllowThreads allowThreads; \
    expr; \
} \
catch (const cv::Exception &e) \
{ \
    PyErr_SetString(opencv_error, e.what()); \
    return 0; \
}

static PyObject* failmsgp(const char *fmt, ...);

static size_t REFCOUNT_OFFSET = (size_t)&(((PyObject*)0)->ob_refcnt) +
    (0x12345678 != *(const size_t*)"\x78\x56\x34\x12\0\0\0\0\0")*sizeof(int);

static inline PyObject* pyObjectFromRefcount(const int* refcount)
{
    return (PyObject*)((size_t)refcount - REFCOUNT_OFFSET);
}

static inline int* refcountFromPyObject(const PyObject* obj)
{
    return (int*)((size_t)obj + REFCOUNT_OFFSET);
}

class NumpyAllocator;

enum { ARG_NONE = 0, ARG_MAT = 1, ARG_SCALAR = 2 };

class NDArrayConverter
{
private:
    void init();
public:
    NDArrayConverter();
    //cv::Mat toMat(const PyObject* o);   //issue bug
    cv::Mat toMat(PyObject* o);
    PyObject* toNDArray(const cv::Mat& mat);
};

}

#endif /* CONVERSION_H_ */

4. src/Conversion.cc

/**
* This file is part of DynaSLAM.
* Copyright (C) 2018 Berta Bescos <bbescos at unizar dot es> (University of Zaragoza)
* For more information see <https://github.com/bertabescos/DynaSLAM>.
*
*/


#include "Conversion.h"
#include 


namespace DynaSLAM
{

static void init()
{
    import_array();
}

static int failmsg(const char *fmt, ...)
{
    char str[1000];

    va_list ap;
    va_start(ap, fmt);
    vsnprintf(str, sizeof(str), fmt, ap);
    va_end(ap);

    PyErr_SetString(PyExc_TypeError, str);
    return 0;
}

class PyAllowThreads
{
public:
    PyAllowThreads() : _state(PyEval_SaveThread()) {}
    ~PyAllowThreads()
    {
        PyEval_RestoreThread(_state);
    }
private:
    PyThreadState* _state;
};

class PyEnsureGIL
{
public:
    PyEnsureGIL() : _state(PyGILState_Ensure()) {}
    ~PyEnsureGIL()
    {
        //std::cout << "releasing"<< std::endl;
        PyGILState_Release(_state);
    }
private:
    PyGILState_STATE _state;
};

using namespace cv;

static PyObject* failmsgp(const char *fmt, ...)
{
    char str[1000];

    va_list ap;
    va_start(ap, fmt);
    vsnprintf(str, sizeof(str), fmt, ap);
    va_end(ap);

    PyErr_SetString(PyExc_TypeError, str);
    return 0;
}


class NumpyAllocator : public MatAllocator
{
public:
#if ( CV_MAJOR_VERSION < 3)
    NumpyAllocator() {}
    ~NumpyAllocator() {}

    void allocate(int dims, const int* sizes, int type, int*& refcount,
                  uchar*& datastart, uchar*& data, size_t* step)
    {

        //PyEnsureGIL gil;

        int depth = CV_MAT_DEPTH(type);
        int cn = CV_MAT_CN(type);

        const int f = (int)(sizeof(size_t)/8);
        int typenum = depth == CV_8U ? NPY_UBYTE : depth == CV_8S ? NPY_BYTE :
                                                                    depth == CV_16U ? NPY_USHORT : depth == CV_16S ? NPY_SHORT :
                                                                                                                     depth == CV_32S ? NPY_INT : depth == CV_32F ? NPY_FLOAT :
                                                                                                                                                                   depth == CV_64F ? NPY_DOUBLE : f*NPY_ULONGLONG + (f^1)*NPY_UINT;
        int i;

        npy_intp _sizes[CV_MAX_DIM+1];
        for( i = 0; i < dims; i++ )
        {
            _sizes[i] = sizes[i];
        }

        if( cn > 1 )
        {
            _sizes[dims++] = cn;
        }
        PyObject* o = PyArray_SimpleNew(dims, _sizes, typenum);
        if(!o)
        {

            CV_Error_(CV_StsError, ("The numpy array of typenum=%d, ndims=%d can not be created", typenum, dims));
        }
        refcount = refcountFromPyObject(o);

        npy_intp* _strides = PyArray_STRIDES(o);
        for( i = 0; i < dims - (cn > 1); i++ )
            step[i] = (size_t)_strides[i];

        datastart = data = (uchar*)PyArray_DATA(o);

    }

    void deallocate(int* refcount, uchar*, uchar*)
    {
        //PyEnsureGIL gil;
        if( !refcount )
            return;
        PyObject* o = pyObjectFromRefcount(refcount);
        Py_INCREF(o);
        Py_DECREF(o);
    }
#else

    NumpyAllocator() {
        stdAllocator = Mat::getStdAllocator();
    }
    ~NumpyAllocator() {
        }

        UMatData* allocate(PyObject* o, int dims, const int* sizes, int type,
                           size_t* step) const {
            UMatData* u = new UMatData(this);
            u->data = u->origdata = (uchar*) PyArray_DATA((PyArrayObject*) o);
            npy_intp* _strides = PyArray_STRIDES((PyArrayObject*) o);
            for (int i = 0; i < dims - 1; i++)
                step[i] = (size_t) _strides[i];
            step[dims - 1] = CV_ELEM_SIZE(type);
            u->size = sizes[0] * step[0];
            u->userdata = o;
            return u;
        }

        UMatData* allocate(int dims0, const int* sizes, int type, void* data,
                           size_t* step, int flags, UMatUsageFlags usageFlags) const {
            if (data != 0) {
                CV_Error(Error::StsAssert, "The data should normally be NULL!");
                // probably this is safe to do in such extreme case
                return stdAllocator->allocate(dims0, sizes, type, data, step, flags,
                                              usageFlags);
            }
            PyEnsureGIL gil;

            int depth = CV_MAT_DEPTH(type);
            int cn = CV_MAT_CN(type);
            const int f = (int) (sizeof(size_t) / 8);
            int typenum =
                    depth == CV_8U ? NPY_UBYTE :
                    depth == CV_8S ? NPY_BYTE :
                    depth == CV_16U ? NPY_USHORT :
                    depth == CV_16S ? NPY_SHORT :
                    depth == CV_32S ? NPY_INT :
                    depth == CV_32F ? NPY_FLOAT :
                    depth == CV_64F ?
                    NPY_DOUBLE :
                    f * NPY_ULONGLONG + (f ^ 1) * NPY_UINT;
            int i, dims = dims0;
            cv::AutoBuffer<npy_intp> _sizes(dims + 1);
            for (i = 0; i < dims; i++)
                _sizes[i] = sizes[i];
            if (cn > 1)
                _sizes[dims++] = cn;
            PyObject* o = PyArray_SimpleNew(dims, _sizes, typenum);
            if (!o)
                CV_Error_(Error::StsError,
                          ("The numpy array of typenum=%d, ndims=%d can not be created", typenum, dims));
            return allocate(o, dims0, sizes, type, step);
        }

        bool allocate(UMatData* u, int accessFlags,
                      UMatUsageFlags usageFlags) const {
            return stdAllocator->allocate(u, accessFlags, usageFlags);
        }

        void deallocate(UMatData* u) const {
            if (u) {
                PyEnsureGIL gil;
                PyObject* o = (PyObject*) u->userdata;
                Py_XDECREF(o);
                delete u;
            }
        }

        const MatAllocator* stdAllocator;
#endif
};

NumpyAllocator g_numpyAllocator;

NDArrayConverter::NDArrayConverter() { init(); }

void NDArrayConverter::init()
{
    import_array();
}


cv::Mat NDArrayConverter::toMat( PyObject *o)
{
    cv::Mat m;

    if(!o || o == Py_None)
    {
        if( !m.data )
            m.allocator = &g_numpyAllocator;
    }

    if( !PyArray_Check(o) )
    {
        failmsg("toMat: Object is not a numpy array");
    }

    int typenum = PyArray_TYPE(o);
    int type = typenum == NPY_UBYTE ? CV_8U : typenum == NPY_BYTE ? CV_8S :
                                                                    typenum == NPY_USHORT ? CV_16U : typenum == NPY_SHORT ? CV_16S :
                                                                                                                            typenum == NPY_INT || typenum == NPY_LONG ? CV_32S :
                                                                                                                                                                        typenum == NPY_FLOAT ? CV_32F :
                                                                                                                                                                                               typenum == NPY_DOUBLE ? CV_64F : -1;

    if( type < 0 )
    {
        failmsg("toMat: Data type = %d is not supported", typenum);
    }

    int ndims = PyArray_NDIM(o);

    if(ndims >= CV_MAX_DIM)
    {
        failmsg("toMat: Dimensionality (=%d) is too high", ndims);
    }

    int size[CV_MAX_DIM+1];
    size_t step[CV_MAX_DIM+1], elemsize = CV_ELEM_SIZE1(type);
    const npy_intp* _sizes = PyArray_DIMS(o);
    const npy_intp* _strides = PyArray_STRIDES(o);
    bool transposed = false;

    for(int i = 0; i < ndims; i++)
    {
        size[i] = (int)_sizes[i];
        step[i] = (size_t)_strides[i];
    }

    if( ndims == 0 || step[ndims-1] > elemsize ) {
        size[ndims] = 1;
        step[ndims] = elemsize;
        ndims++;
    }

    if( ndims >= 2 && step[0] < step[1] )
    {
        std::swap(size[0], size[1]);
        std::swap(step[0], step[1]);
        transposed = true;
    }

    if( ndims == 3 && size[2] <= CV_CN_MAX && step[1] == elemsize*size[2] )
    {
        ndims--;
        type |= CV_MAKETYPE(0, size[2]);
    }

    if( ndims > 2)
    {
        failmsg("toMat: Object has more than 2 dimensions");
    }

    m = Mat(ndims, size, type, PyArray_DATA(o), step);

    if( m.data )
    {
#if ( CV_MAJOR_VERSION < 3)
        m.refcount = refcountFromPyObject(o);
        m.addref(); // protect the original numpy array from deallocation
        // (since Mat destructor will decrement the reference counter)
#else
        m.u = g_numpyAllocator.allocate(o, ndims, size, type, step);
        m.addref();
        Py_INCREF(o);
        //m.u->refcount = *refcountFromPyObject(o);
#endif

    };
    m.allocator = &g_numpyAllocator;

    if( transposed )
    {
        Mat tmp;
        tmp.allocator = &g_numpyAllocator;
        transpose(m, tmp);
        m = tmp;
    }
    return m;
}

PyObject* NDArrayConverter::toNDArray(const cv::Mat& m)
{
    if( !m.data )
        Py_RETURN_NONE;
    Mat temp;
    Mat *p = (Mat*)&m;
#if ( CV_MAJOR_VERSION < 3)
    if(!p->refcount || p->allocator != &g_numpyAllocator)
    {
        temp.allocator = &g_numpyAllocator;
        m.copyTo(temp);
        p = &temp;
    }
    p->addref();
    return pyObjectFromRefcount(p->refcount);
#else
    if(!p->u || p->allocator != &g_numpyAllocator)
    {
        temp.allocator = &g_numpyAllocator;
        m.copyTo(temp);
        p = &temp;
    }
    //p->addref();
    //return pyObjectFromRefcount(&p->u->refcount);
    PyObject* o = (PyObject*) p->u->userdata;
    Py_INCREF(o);
    return o;
#endif

}

}

五.编译源码与运行

编译DynaSLAM源码

cd DynaSLAM
chmod +x build.sh
./build.sh

如果运行时不给后面两个参数,就相当于运行ORB-SLAM2
如果只想用MaskRCNN的功能但不想存mask,那么在PATH_MASK那里就写为no_save,否则就给一个存Mask的文件夹地址

./Examples/RGB-D/rgbd_tum Vocabulary/ORBvoc.txt Examples/RGB-D/TUM3.yaml /XXX/tum_dataset/ /XXX/tum_dataset/associations.txt masks/ output/

如果运行起来发现Light Track一直不成功,无法初始化,那么就把ORB参数设置中特征点的数目增多,github上大家一般改成3000就好了。


完结,撒花~

你可能感兴趣的:(SLAM,opencv,计算机视觉,tensorflow)