基于Azure Kinect DK相机的安装配置,获取并保存RGB、Depth、IR图、点云,点云融合(Windows)

版本:VS2019、Kinect3.0、相机传感器SDK1.4.0、OpenCV3.4.1、PCL1.10.1
参考文章:
基于Azure Kinect SDK获取物体rgb图、深度图、红外IR图和点云数据并保存到本地
RGB-D相机(Azure Kinect DK)RGB图、深度图的获取,配准与保存

目录

  • 项目配置
    • OpenCV和PCL安装
    • 相机安装
    • 配置到VS项目中
  • 获取RGB、Depth、IR图并保存
    • 代码
  • 点云融合
    • 代码
  • 获取彩色图和深度图并保存为点云

项目配置

OpenCV和PCL安装

VS2019配置PCL(windows)
VS2019配置OpenCV(windows)

相机安装

1、将相机连接电脑
2、下载并安装传感器SDK
下载地址:https://github.com/microsoft/Azure-Kinect-Sensor-SDK/blob/develop/docs/usage.md
基于Azure Kinect DK相机的安装配置,获取并保存RGB、Depth、IR图、点云,点云融合(Windows)_第1张图片
下载完成后点击安装即可

配置到VS项目中

1、选择项目中的引用,右键选择管理NuGet包
基于Azure Kinect DK相机的安装配置,获取并保存RGB、Depth、IR图、点云,点云融合(Windows)_第2张图片
2、在浏览中,选择下图所示包,点击下载安装即可
在这里插入图片描述
基于Azure Kinect DK相机的安装配置,获取并保存RGB、Depth、IR图、点云,点云融合(Windows)_第3张图片
3、在项目中添加头文件

#include 
#include 
#include 

 
   
   
   
   
  • 1
  • 2
  • 3

获取RGB、Depth、IR图并保存

需要在脚本目录下创建rgb、depth、ir三个文件夹才可以保存图片

代码

// C++
#include 
#include 
#include 
// OpenCV
#include 
#include 
#include 
// Kinect DK
#include 
using namespace cv;
using namespace std;
// 宏
// 方便控制是否 std::cout 信息
#define DEBUG_std_cout 0
int main(int argc, char* argv[]) {
    /*
        找到并打开 Azure Kinect 设备
    */
    // 发现已连接的设备数
    const uint32_t device_count = k4a::device::get_installed_count();
    if (0 == device_count) {
        std::cout << "Error: no K4A devices found. " << std::endl;
        return -1;
    }
    else {
        std::cout << "Found " << device_count << " connected devices. " << std::endl;
        if (1 != device_count)// 超过1个设备,也输出错误信息。
        {
            std::cout << "Error: more than one K4A devices found. " << std::endl;
            return -1;
        }
        else// 该示例代码仅限对1个设备操作
        {
            std::cout << "Done: found 1 K4A device. " << std::endl;
        }
    }
    // 打开(默认)设备
    k4a::device device = k4a::device::open(K4A_DEVICE_DEFAULT);
    std::cout << "Done: open device. " << std::endl;
    /*
        检索并保存 Azure Kinect 图像数据
    */
    // 配置并启动设备
    k4a_device_configuration_t config = K4A_DEVICE_CONFIG_INIT_DISABLE_ALL;
    config.camera_fps = K4A_FRAMES_PER_SECOND_30;
    config.color_format = K4A_IMAGE_FORMAT_COLOR_BGRA32;
    config.color_resolution = K4A_COLOR_RESOLUTION_1080P;
    config.depth_mode = K4A_DEPTH_MODE_NFOV_UNBINNED;
    //config.depth_mode = K4A_DEPTH_MODE_WFOV_2X2BINNED;
    config.synchronized_images_only = true;// ensures that depth and color images are both available in the capture
    device.start_cameras(&config);
    std::cout << "Done: start camera." << std::endl;
    //写入txt文件流
    ofstream rgb_out;
    ofstream d_out;
    ofstream ir_out;
    rgb_out.open("./rgb.txt");
    d_out.open("./depth.txt");
    ir_out.open("./ir.txt");
    rgb_out << "#  color images" << endl;
    rgb_out << "#  file: rgbd_dataset" << endl;
    rgb_out << "#  timestamp" << "    " << "filename" << endl;
    d_out << "#  depth images" << endl;
    d_out << "#  file: rgbd_dataset" << endl;
    d_out << "#  timestamp" << "    " << "filename" << endl;
    ir_out << "#  ir images" << endl;
    ir_out << "#  file: rgbd_dataset" << endl;
    ir_out << "#  timestamp" << "    " << "filename" << endl;
    rgb_out << flush;
    d_out << flush;
    // 稳定化
    k4a::capture capture;
    int iAuto = 0;//用来稳定,类似自动曝光
    int iAutoError = 0;// 统计自动曝光的失败次数
    while (true) {
        if (device.get_capture(&capture)) {
            std::cout << iAuto << ". Capture several frames to give auto-exposure" << std::endl;
            // 跳过前 n 个(成功的数据采集)循环,用来稳定
            if (iAuto != 30) {
                iAuto++;
                continue;
            }
            else {
                std::cout << "Done: auto-exposure" << std::endl;
                break;// 跳出该循环,完成相机的稳定过程
            }
        }
        else {
            std::cout << iAutoError << ". K4A_WAIT_RESULT_TIMEOUT." << std::endl;
            if (iAutoError != 30) {
                iAutoError++;
                continue;
            }
            else {
                std::cout << "Error: failed to give auto-exposure. " << std::endl;
                return -1;
            }
        }
    }
    std::cout << "-----------------------------------" << std::endl;
    std::cout << "----- Have Started Kinect DK. -----" << std::endl;
    std::cout << "-----------------------------------" << std::endl;
    // 从设备获取捕获
    k4a::image rgbImage;
    k4a::image depthImage;
    k4a::image irImage;
    k4a::image transformed_depthImage;
    cv::Mat cv_rgbImage_with_alpha;
    cv::Mat cv_rgbImage_no_alpha;
    cv::Mat cv_depth;
    cv::Mat cv_depth_8U;
    cv::Mat cv_irImage;
    cv::Mat cv_irImage_8U;
    while (true)
        // for (size_t i = 0; i < 100; i++)
    {
        // if (device.get_capture(&capture, std::chrono::milliseconds(0)))
        if (device.get_capture(&capture)) {
            // rgb
            // * Each pixel of BGRA32 data is four bytes. The first three bytes represent Blue, Green,
            // * and Red data. The fourth byte is the alpha channel and is unused in the Azure Kinect APIs.
            rgbImage = capture.get_color_image();
#if DEBUG_std_cout == 1
            std::cout << "[rgb] " << "\n"
                << "format: " << rgbImage.get_format() << "\n"
                << "device_timestamp: " << rgbImage.get_device_timestamp().count() << "\n"
                << "system_timestamp: " << rgbImage.get_system_timestamp().count() << "\n"
                << "height*width: " << rgbImage.get_height_pixels() << ", " << rgbImage.get_width_pixels()
                << std::endl;
#endif
            // depth
            // * Each pixel of DEPTH16 data is two bytes of little endian unsigned depth data. The unit of the data is in
            // * millimeters from the origin of the camera.
            depthImage = capture.get_depth_image();
#if DEBUG_std_cout == 1
            std::cout << "[depth] " << "\n"
                << "format: " << depthImage.get_format() << "\n"
                << "device_timestamp: " << depthImage.get_device_timestamp().count() << "\n"
                << "system_timestamp: " << depthImage.get_system_timestamp().count() << "\n"
                << "height*width: " << depthImage.get_height_pixels() << ", " << depthImage.get_width_pixels()
                << std::endl;
#endif
            // ir
                  // * Each pixel of IR16 data is two bytes of little endian unsigned depth data. The value of the data represents
                  // * brightness.
            irImage = capture.get_ir_image();
#if DEBUG_std_cout == 1
            std::cout << "[ir] " << "\n"
                << "format: " << irImage.get_format() << "\n"
                << "device_timestamp: " << irImage.get_device_timestamp().count() << "\n"
                << "system_timestamp: " << irImage.get_system_timestamp().count() << "\n"
                << "height*width: " << irImage.get_height_pixels() << ", " << irImage.get_width_pixels()
                << std::endl;
#endif
            //深度图和RGB图配准
            k4a::calibration k4aCalibration = device.get_calibration(config.depth_mode, config.color_resolution);  //获取相机标定参数
            k4a::transformation k4aTransformation = k4a::transformation(k4aCalibration);
            transformed_depthImage = k4aTransformation.depth_image_to_color_camera(depthImage);
            cv_rgbImage_with_alpha = cv::Mat(rgbImage.get_height_pixels(), rgbImage.get_width_pixels(), CV_8UC4,
                (void*)rgbImage.get_buffer());
            cv::cvtColor(cv_rgbImage_with_alpha, cv_rgbImage_no_alpha, cv::COLOR_BGRA2BGR);
            cv_depth = cv::Mat(transformed_depthImage.get_height_pixels(), transformed_depthImage.get_width_pixels(), CV_16U,
                (void*)transformed_depthImage.get_buffer(), static_cast<size_t>(transformed_depthImage.get_stride_bytes()));
            normalize(cv_depth, cv_depth_8U, 0, 256 * 256, NORM_MINMAX);
            cv_depth_8U.convertTo(cv_depth, CV_8U, 1);
            cv_irImage = cv::Mat(irImage.get_height_pixels(), irImage.get_width_pixels(), CV_16U,
                (void*)irImage.get_buffer(), static_cast<size_t>(irImage.get_stride_bytes()));
            normalize(cv_irImage, cv_irImage_8U, 0, 256 * 256, NORM_MINMAX);
            cv_irImage.convertTo(cv_irImage_8U, CV_8U, 1);
            // show image
            /*cv::imshow("color", cv_rgbImage_no_alpha);
            cv::imshow("depth", cv_depth_8U);
            cv::imshow("ir", cv_irImage_8U);*/
            // save image
            double time_rgb = static_cast<double>(std::chrono::duration_cast<std::chrono::microseconds>(
                rgbImage.get_device_timestamp()).count());
            std::string filename_rgb = std::to_string(time_rgb / 1000000) + ".png";
            double time_d = static_cast<double>(std::chrono::duration_cast<std::chrono::microseconds>(
                depthImage.get_device_timestamp()).count());
            std::string filename_d = std::to_string(time_d / 1000000) + ".png";
            double time_ir = static_cast<double>(std::chrono::duration_cast<std::chrono::microseconds>(
                irImage.get_device_timestamp()).count());
            std::string filename_ir = std::to_string(time_ir / 1000000) + ".png";
            imwrite("./rgb/" + filename_rgb, cv_rgbImage_no_alpha);
            imwrite("./depth/" + filename_d, cv_depth_8U);
            imwrite("./ir/" + filename_ir, cv_irImage_8U);
            std::cout << "Acquiring!" << endl;
            //写入depth.txt,rgb.txt文件
            rgb_out << std::to_string(time_rgb / 1000000) << "    " << "rgb/" << filename_rgb << endl;
            d_out << std::to_string(time_d / 1000000) << "    " << "depth/" << filename_d << endl;
            ir_out << std::to_string(time_ir / 1000000) << "    " << "ir/" << filename_ir << endl;
            rgb_out << flush;
            d_out << flush;
            ir_out << flush;
            cv_rgbImage_with_alpha.release();
            cv_rgbImage_no_alpha.release();
            cv_depth.release();
            cv_depth_8U.release();
            cv_irImage.release();
            cv_irImage_8U.release();
            capture.reset();
        }
        else {
            std::cout << "false: K4A_WAIT_RESULT_TIMEOUT." << std::endl;
        }
    }
    cv::destroyAllWindows();
    rgb_out << flush;
    d_out << flush;
    ir_out << flush;
    rgb_out.close();
    d_out.close();
    ir_out.close();
    // 释放,关闭设备
    rgbImage.reset();
    depthImage.reset();
    irImage.reset();
    capture.reset();
    device.close();
    return 1;
}

点云融合

要想生成点云并获取需要在转换的时候对深度图进行归一化处理

代码

slamBase.h

# pragma once //保证头文件只被编译一次
#include 
// opencv
#include 
#include 
// pcl
#include 
#include 
#include 
#include 
using namespace std;
using namespace cv;
typedef pcl::PointXYZRGB PointT;
typedef pcl::PointCloud<PointT> PointCloud;
// camera instrinsic parameters
struct CAMERA_INTRINSIC_PARAMETERS
{
    double fx, fy, cx, cy, scale;
};
struct FRAME
{
    cv::Mat rgb, depth;
};
PointCloud::Ptr image2PointCloud(Mat rgb, Mat depth, CAMERA_INTRINSIC_PARAMETERS camera);
PointCloud::Ptr pointCloudFusion(PointCloud::Ptr& original, FRAME& newFrame, CAMERA_INTRINSIC_PARAMETERS camera);
void readCameraTrajectory(string camTransFile, vector<Eigen::Isometry3d>& poses);

slamBase.cpp

#include "slamBase.h"
#include 
#include 
PointCloud::Ptr image2PointCloud(Mat rgb, Mat depth, CAMERA_INTRINSIC_PARAMETERS camera)
{
    PointCloud::Ptr cloud(new PointCloud);
    for (int m = 0; m < depth.rows; m++)
        for (int n = 0; n < depth.cols; n++)
        {
            // 获取深度图中(m,n)处的值
            ushort d = depth.ptr<ushort>(m)[n];
            // d 可能没有值,若如此,跳过此点
            if (d == 0)
                continue;
            // d 存在值,则向点云增加一个点
            PointT p;
            // 计算这个点的空间坐标
            p.z = double(d) / camera.scale;
            p.x = (n - camera.cx) * p.z / camera.fx;
            p.y = (m - camera.cy) * p.z / camera.fy;
            // 从rgb图像中获取它的颜色
            p.b = rgb.ptr<uchar>(m)[n * 3];
            p.g = rgb.ptr<uchar>(m)[n * 3 + 1];
            p.r = rgb.ptr<uchar>(m)[n * 3 + 2];
            // 把p加入到点云中
            cloud->points.push_back(p);
        }
    // 设置并保存点云
    cloud->height = 1;
    cloud->width = cloud->points.size();
    cloud->is_dense = false;
    return cloud;
}
PointCloud::Ptr pointCloudFusion(PointCloud::Ptr& original, FRAME& newFrame, CAMERA_INTRINSIC_PARAMETERS camera)
{
    PointCloud::Ptr newCloud(new PointCloud()), transCloud(new PointCloud());
    newCloud = image2PointCloud(newFrame.rgb, newFrame.depth, camera);
    *original += *newCloud;
    return original;
}
void readCameraTrajectory(string camTransFile, vector<Eigen::Isometry3d>& poses)
{
    ifstream fcamTrans(camTransFile);
    if (!fcamTrans.is_open())
    {
        cerr << "trajectory is empty!" << endl;
        return;
    }
    else
    {
        string str;
        while ((getline(fcamTrans, str)))
        {
            Eigen::Quaterniond q;
            Eigen::Vector3d t;
            Eigen::Isometry3d T = Eigen::Isometry3d::Identity();
            if (str.at(0) == '#') {
                cout << "str" << str << endl;
                continue;
            }
            istringstream strdata(str);
            strdata >> t[0] >> t[1] >> t[2] >> q.x() >> q.y() >> q.z() >> q.w();
            T.rotate(q);
            T.pretranslate(t);
            poses.push_back(T);
        }
    }
}

pointCloudFusion.cpp

#include "slamBase.h"
int main(int argc, char** argv)
{
    CAMERA_INTRINSIC_PARAMETERS cameraParams{ 913.451, 913.122, 953.516, 554.09, 1 };  //相机内参
    int frameNum = 3;
    PointCloud::Ptr fusedCloud(new PointCloud());
    for (int idx = 0; idx < frameNum; idx++)
    {
        string rgbPath = "D:\\data\\rgb\\" + to_string(idx) + ".png";   //图像以数字命名
        string depthPath = "D:\\data\\depth\\" + to_string(idx) + ".png";
        FRAME frm;
        frm.rgb = cv::imread(rgbPath);
        if (frm.rgb.empty()) {
            cerr << "Fail to load rgb image!" << endl;
        }
        frm.depth = cv::imread(depthPath, -1);
        if (frm.depth.empty()) {
            cerr << "Fail to load depth image!" << endl;
        }
        if (idx == 0)
        {
            fusedCloud = image2PointCloud(frm.rgb, frm.depth, cameraParams);
        }
        else
        {
            fusedCloud = pointCloudFusion(fusedCloud, frm, cameraParams);
        }
    }
    pcl::io::savePCDFile("D:\\data\\fusedCloud.pcd", *fusedCloud);
    pcl::io::savePLYFile("D:\\data\\fusedCloud.ply", *fusedCloud);
    cout << "END!" << endl;
    return 0;
}

获取彩色图和深度图并保存为点云

// C++
#include 
#include 
#include 
#include 
#include 
#include 
// OpenCV
#include 
#include 
#include 
// Kinect DK
#include 
#include "slamBase.h"
// PCL 库
#include 
#include 
#include 
// 定义点云类型
typedef pcl::PointXYZRGB PointT;
typedef pcl::PointCloud<PointT> PointCloud;
using namespace cv;
using namespace std;
// 宏
// 方便控制是否 std::cout 信息
#define DEBUG_std_cout 0
void regist()
{
	CAMERA_INTRINSIC_PARAMETERS cameraParams{ 913.451, 913.122, 953.516, 554.09, 1 };
	int frameNum = 1;
	//vector poses;
	PointCloud::Ptr fusedCloud(new PointCloud());
	//string cameraPosePath = path + "cameraTrajectory.txt";
	//readCameraTrajectory(cameraPosePath, poses);
	for (int idx = 0; idx < frameNum; idx++)
	{
		//string rgbPath = "D:\\data\\rgb\\" + to_string(idx) + ".png";
		//string depthPath = "D:\\data\\depth\\" + to_string(idx) + ".png";
		string rgbPath = "D:\\data\\0rgb.png";
		string depthPath = "D:\\data\\0d.png";
		//string pclPath = "D:\\data\\" + to_string(idx) + ".ply";
		string pclPath = "D:\\data\\ply.ply";
		FRAME frm;
		frm.rgb = cv::imread(rgbPath);
		if (frm.rgb.empty()) {
			cerr << "Fail to load rgb image!" << endl;
		}
		frm.depth = cv::imread(depthPath, -1);
		if (frm.depth.empty()) {
			cerr << "Fail to load depth image!" << endl;
		}
		if (idx == 0)
		{
		    //fusedCloud = image2PointCloud(frm.rgb, frm.depth, cameraParams);
		    //pcl::io::savePLYFile("D:\\data\\fusedCloud1.ply", *fusedCloud);
		}
		else
		{
		    fusedCloud = pointCloudFusion(fusedCloud, frm, cameraParams);
		}
		fusedCloud = image2PointCloud(frm.rgb, frm.depth, cameraParams);
		pcl::io::savePLYFile(pclPath, *fusedCloud);
	}
	//pcl::io::savePCDFile("D:\\data\\fusedCloud.pcd", *fusedCloud);
	pcl::io::savePLYFile("D:\\data\\fusedCloud.ply", *fusedCloud);
	cout << "END!" << endl;
}
int main3(int argc, char* argv[]) {
	/*
		找到并打开 Azure Kinect 设备
	*/
	// 发现已连接的设备数
	const uint32_t device_count = k4a::device::get_installed_count();
	if (0 == device_count) {
		std::cout << "Error: no K4A devices found. " << std::endl;
		return -1;
	}
	else {
		std::cout << "Found " << device_count << " connected devices. " << std::endl;
		if (1 != device_count)// 超过1个设备,也输出错误信息。
		{
			std::cout << "Error: more than one K4A devices found. " << std::endl;
			return -1;
		}
		else// 该示例代码仅限对1个设备操作
		{
			std::cout << "Done: found 1 K4A device. " << std::endl;
		}
	}
	// 打开(默认)设备
	k4a::device device = k4a::device::open(K4A_DEVICE_DEFAULT);
	std::cout << "Done: open device. " << std::endl;
	/*
		检索并保存 Azure Kinect 图像数据
	*/
	// 配置并启动设备
	k4a_device_configuration_t config = K4A_DEVICE_CONFIG_INIT_DISABLE_ALL;
	config.camera_fps = K4A_FRAMES_PER_SECOND_30;
	//config.camera_fps = K4A_FRAMES_PER_SECOND_15;
	config.color_format = K4A_IMAGE_FORMAT_COLOR_BGRA32;
	config.color_resolution = K4A_COLOR_RESOLUTION_720P;
	config.depth_mode = K4A_DEPTH_MODE_NFOV_UNBINNED;
	//config.depth_mode = K4A_DEPTH_MODE_WFOV_2X2BINNED;
	config.synchronized_images_only = true;// ensures that depth and color images are both available in the capture
	device.start_cameras(&config);
	std::cout << "Done: start camera." << std::endl;
	//写入txt文件流
	ofstream rgb_out;
	ofstream d_out;
	rgb_out.open("./rgb.txt");
	d_out.open("./depth.txt");
	rgb_out << "#  color images" << endl;
	rgb_out << "#  file: rgbd_dataset" << endl;
	rgb_out << "#  timestamp" << "    " << "filename" << endl;
	d_out << "#  depth images" << endl;
	d_out << "#  file: rgbd_dataset" << endl;
	d_out << "#  timestamp" << "    " << "filename" << endl;
	rgb_out << flush;
	d_out << flush;
	// 稳定化
	k4a::capture capture;
	int iAuto = 0;//用来稳定,类似自动曝光
	int iAutoError = 0;// 统计自动曝光的失败次数
	while (true) {
		if (device.get_capture(&capture)) {
			std::cout << iAuto << ". Capture several frames to give auto-exposure" << std::endl;
			// 跳过前 n 个(成功的数据采集)循环,用来稳定
			if (iAuto != 30) {
				iAuto++;
				continue;
			}
			else {
				std::cout << "Done: auto-exposure" << std::endl;
				break;// 跳出该循环,完成相机的稳定过程
			}
		}
		else {
			std::cout << iAutoError << ". K4A_WAIT_RESULT_TIMEOUT." << std::endl;
			if (iAutoError != 30) {
				iAutoError++;
				continue;
			}
			else {
				std::cout << "Error: failed to give auto-exposure. " << std::endl;
				return -1;
			}
		}
	}
	std::cout << "-----------------------------------" << std::endl;
	std::cout << "----- Have Started Kinect DK. -----" << std::endl;
	std::cout << "-----------------------------------" << std::endl;
	// 从设备获取捕获
	k4a::image rgbImage;
	k4a::image depthImage;
	//k4a::image irImage;
	k4a::image transformed_depthImage;
	cv::Mat cv_rgbImage_with_alpha;
	cv::Mat cv_rgbImage_no_alpha;
	cv::Mat cv_depth;
	cv::Mat cv_depth_8U;
	int index = 0;
	while (index < 1) {
		if (device.get_capture(&capture)) {
			// rgb
			// * Each pixel of BGRA32 data is four bytes. The first three bytes represent Blue, Green,
			// * and Red data. The fourth byte is the alpha channel and is unused in the Azure Kinect APIs.
			rgbImage = capture.get_color_image();
#if DEBUG_std_cout == 1
			std::cout << "[rgb] " << "\n"
				<< "format: " << rgbImage.get_format() << "\n"
				<< "device_timestamp: " << rgbImage.get_device_timestamp().count() << "\n"
				<< "system_timestamp: " << rgbImage.get_system_timestamp().count() << "\n"
				<< "height*width: " << rgbImage.get_height_pixels() << ", " << rgbImage.get_width_pixels()
				<< std::endl;
#endif
			// depth
			// * Each pixel of DEPTH16 data is two bytes of little endian unsigned depth data. The unit of the data is in
			// * millimeters from the origin of the camera.
			depthImage = capture.get_depth_image();
#if DEBUG_std_cout == 1
			std::cout << "[depth] " << "\n"
				<< "format: " << depthImage.get_format() << "\n"
				<< "device_timestamp: " << depthImage.get_device_timestamp().count() << "\n"
				<< "system_timestamp: " << depthImage.get_system_timestamp().count() << "\n"
				<< "height*width: " << depthImage.get_height_pixels() << ", " << depthImage.get_width_pixels()
				<< std::endl;
#endif
			//获取彩色点云
			k4a::calibration k4aCalibration = device.get_calibration(config.depth_mode, config.color_resolution);
			k4a::transformation k4aTransformation = k4a::transformation(k4aCalibration);
			//PointCloud::Ptr cloud(new PointCloud);
			int color_image_width_pixels = rgbImage.get_width_pixels();
			int color_image_height_pixels = rgbImage.get_height_pixels();
			transformed_depthImage = NULL;
			transformed_depthImage = k4a::image::create(K4A_IMAGE_FORMAT_DEPTH16,
				color_image_width_pixels,
				color_image_height_pixels,
				color_image_width_pixels * (int)sizeof(uint16_t));
			k4a::image point_cloud_image = NULL;
			point_cloud_image = k4a::image::create(K4A_IMAGE_FORMAT_CUSTOM,
				color_image_width_pixels,
				color_image_height_pixels,
				color_image_width_pixels * 3 * (int)sizeof(int16_t));
			if (depthImage.get_width_pixels() == rgbImage.get_width_pixels() && depthImage.get_height_pixels() == rgbImage.get_height_pixels()) {
				std::copy(depthImage.get_buffer(), depthImage.get_buffer() + depthImage.get_height_pixels() * depthImage.get_width_pixels() * (int)sizeof(uint16_t), transformed_depthImage.get_buffer());
			}
			else {
				k4aTransformation.depth_image_to_color_camera(depthImage, &transformed_depthImage);
			}
			k4aTransformation.depth_image_to_point_cloud(transformed_depthImage, K4A_CALIBRATION_TYPE_COLOR, &point_cloud_image);
			pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZRGB>);
			cloud->width = color_image_width_pixels;
			cloud->height = color_image_height_pixels;
			cloud->is_dense = false;
			cloud->resize(static_cast<size_t>(color_image_width_pixels) * color_image_height_pixels);
			const int16_t* point_cloud_image_data = reinterpret_cast<const int16_t*>(point_cloud_image.get_buffer());
			const uint8_t* color_image_data = rgbImage.get_buffer();
			for (int i = 0; i < color_image_width_pixels * color_image_height_pixels; i++) {
				PointT point;
				point.x = point_cloud_image_data[3 * i + 0] / 1000.0f;
				point.y = point_cloud_image_data[3 * i + 1] / 1000.0f;
				point.z = point_cloud_image_data[3 * i + 2] / 1000.0f;
				point.b = color_image_data[4 * i + 0];
				point.g = color_image_data[4 * i + 1];
				point.r = color_image_data[4 * i + 2];
				uint8_t alpha = color_image_data[4 * i + 3];
				if (point.x == 0 && point.y == 0 && point.z == 0 && alpha == 0)
					continue;
				cloud->points[i] = point;
			}
			pcl::io::savePLYFile("D:\\data\\ply.ply", *cloud);   //将点云数据保存为ply文件
		}
		else {
			std::cout << "false: K4A_WAIT_RESULT_TIMEOUT." << std::endl;
		}
		index++;
	}
	cv::destroyAllWindows();
	rgb_out << flush;
	d_out << flush;
	rgb_out.close();
	d_out.close();
	// 释放,关闭设备
	rgbImage.reset();
	depthImage.reset();
	capture.reset();
	device.close();
	return 1;
                
 
   
   
   
   

你可能感兴趣的:(PCL,azure,c++,opencv)