- day39
心落薄荷糖
Python训练营python
#先继续之前的代码importtorchimporttorch.nnasnnimporttorch.optimasoptimfromtorch.utils.dataimportDataLoader,Dataset#DataLoader是PyTorch中用于加载数据的工具fromtorchvisionimportdatasets,transforms#torchvision是一个用于计算机视觉的库,
- Python机器学习元学习库higher
音程
机器学习人工智能python机器学习
higher是一个用于元学习(Meta-Learning)和高阶导数(Higher-ordergradients)的Python库,专为PyTorch设计。它扩展了PyTorch的自动微分机制,使得在训练过程中可以动态地计算参数的梯度更新,并把这些更新过程纳入到更高阶的梯度计算中。一、主要用途higher主要用于以下场景:元学习(Meta-Learning)比如MAML(Model-Agnosti
- 强化学习 16G实践以下是基于CQL(Conservative Q-Learning)与QLoRA(Quantized Low-Rank Adaptation)结合的方案相关开源项目及资源,【ai技】
行云流水AI笔记
开源人工智能
根据你提供的CUDA版本(11.5)和NVIDIA驱动错误信息,以下是PyTorch、TensorFlow的兼容版本建议及环境修复方案:1.版本兼容性表框架兼容CUDA版本推荐安装命令(CUDA11.5)PyTorch11.3/11.6pipinstalltorchtorchvisiontorchaudio--extra-index-urlhttps://download.pytorch.org/
- 【机器学习&深度学习】反向传播机制
目录一、一句话定义二、类比理解三、为什重要?四、用生活例子解释:神经网络=烹饪机器人4.1第一步:尝一口(前向传播)4.2第二步:倒着推原因(反向传播)五、换成人工智能流程说一遍六、图示类比:找山顶(最优参数)七、总结一句人话八、PyTorch代码示例:亲眼看到每一层的梯度九、梯度=损失函数对参数的偏导数十、类比总结反向传播(Backpropagation)是神经网络中训练过程的核心机制,它就像“
- Transformer底层原理解析及基于pytorch的代码实现
LiRuiJie
人工智能transformerpytorch深度学习
1.Transformer底层原理解析1.1核心架构突破Transformer是自然语言处理领域的革命性架构,其核心设计思想完全摒弃了循环结构,通过自注意力机制实现全局依赖建模。整体架构图如下:以下是其核心组件:1)自注意力机制(Self-Attention)-输入序列的每个位置都能直接关注所有位置-数学公式(缩放点积注意力):-Q:查询矩阵(当前关注点)-K:键矩阵(被比较项)-V:值矩阵(实际
- pytorch-数学运算
码啥码
深度学习之pytorchpytorch深度学习python
四则运算加减乘除add+sub-mul*div/a=torch.rand(3,4)b=torch.rand(4)a,b'''(tensor([[0.2384,0.5022,0.7100,0.0400],[0.1716,0.0894,0.0795,0.1456],[0.7635,0.9423,0.7649,0.3379]]),tensor([0.8526,0.8296,0.1845,0.7922])
- 【Python深度学习】零基础掌握Pytorch Pooling layers nn.MaxPool方法
Mr数据杨
Python深度学习python深度学习pytorch
在深度学习的世界中,MaxPooling是一种关键的操作,用于降低数据的维度并保留重要特征。这就像是从一堆照片中挑选出最能代表某个场景的那张。PyTorch提供了多种MaxPooling层,包括nn.MaxPool1d、nn.MaxPool2d和nn.MaxPool3d,它们分别适用于不同维度的数据处理。如果处理的是声音信号(一维数据),就会用到nn.MaxPool1d。而处理图像(二维数据)时,
- Pytorch模型安卓部署
python&java
pytorch人工智能python
Pytorch是一种流行的深度学习框架,用于算法开发,而Android是一种广泛应用的操作系统,多应用于移动设备当中。目前多数的研究都是在于算法上,个人觉得把算法落地是一件很有意思的事情,因此本人准备分享一些模型落地的文章(后续可能分享微信小程序部署,PyQt部署以及exe打包,ncnn部署,tensorRT部署,MNN部署)。本篇文章主要分享Pytorch的Android端部署。看这篇文章的读者
- 【PyTorch】保存和加载模型
Jackilina_Stone
#DeepLearningpytorchpython人工智能深度学习模型
目录■state_dict■用于推理的保存和加载模型保存/加载state_dict保存/加载整个模型以TorchScript格式导出/加载模型■保存和加载用于推断和/或恢复训练的一般检查点(Checkpoint)■将多个模型保存在一个文件中■使用来自不同模型的参数进行暖启动(Warmstarting)模型■跨设备保存和加载模型保存在GPU,加载到CPU保存在GPU,加载到GPU保存在CPU,加载到
- PyTorch教程:LSTM语言模型的动态量化技术解析
怀灏其Prudent
PyTorch教程:LSTM语言模型的动态量化技术解析tutorialsPyTorchtutorials.项目地址:https://gitcode.com/gh_mirrors/tuto/tutorials前言在深度学习模型部署过程中,模型大小和推理速度是两个至关重要的考量因素。PyTorch提供的动态量化技术能够在不显著影响模型准确率的前提下,有效减小模型体积并提升推理速度。本文将深入解析如何对
- 【机器学习】数学基础——张量(傻瓜篇)
一叶千舟
深度学习【理论】机器学习人工智能
目录前言一、张量的定义1.标量(0维张量)2.向量(1维张量)3.矩阵(2维张量)4.高阶张量(≥3维张量)二、张量的数学表示2.1张量表示法示例三、张量的运算3.1常见张量运算四、张量在深度学习中的应用4.1PyTorch示例:张量在神经网络中的运用五、总结:张量的多维世界延伸阅读前言在机器学习、深度学习以及物理学中,张量是一个至关重要的概念。无论是在人工智能领域的神经网络中,还是在高等数学、物
- 【大模型学习 | 量化】pytorch量化基础知识(1)
九年义务漏网鲨鱼
算法学习pytorch人工智能
pytorch量化[!note]官方定义:performingcomputationsandstoringtensorsatlowerbitwidthsthanfloatingpointprecision.支持INT8量化,可以降低4倍的模型大小以及显存需求,加速2-4倍的推理速度通俗理解:降低权重和激活值的精度(FP32→INT8),从而提高模型大小以及显存需求。一、前置知识1.1算子融合将多个
- pytorch 要点之雅可比向量积
AI大模型教程
pytorch人工智能pythonfacebook深度学习机器学习webpack
自动微分是PyTorch深度学习框架的核心。既然是核心,就需要敲黑板、划重点学习。同时,带来另外一个重要的数学概念:雅可比向量积。PyTorch中的自动微分与雅可比向量积自动微分(AutomaticDifferentiation,AD)是深度学习框架中的关键技术之一,它使得模型训练变得更加简单和高效。且已知:PyTorch是一个广泛使用的深度学习框架,它内置了强大的自动微分功能。在本文中,我们将深
- 深度学习计算机视觉开源系统OpenMMLab(mmsegmentation、mmdetection、mmpose)环境配置【详细、可运行】
nomoremorphine
深度学习计算机视觉开源
OpenMMLab(mmsegmentation、mmdetection、mmpose)环境配置OpenMMLab简介优势:一、Windows/Linux下环境配置(以mmsegmentationv1.2.2(最新版)为例)0.确认安装版本信息1)确认电脑显卡版本2)确认mmcv对应版本3)确认版本1.安装CUDA和cuDNN2.创建conda环境,下载pytorch3.安装mmcv4.安装MMS
- Python Robot Framework【自动化测试框架】简介
老胖闲聊
Python库大全python开发语言
想全面了解DeepSeek的看过来【包邮】DeepSeek全攻略人人需要的AI通识课零基础掌握DeepSeek的实用操作手册指南【限量作者亲笔签名版售完即止】玩转DeepSeek这本就够了【自营包邮】DeepSeek实战指南deepseek从入门到精通实用操作指南现代科技科普读物AI普及知识读物人工智能使用教程中小学读物京东超级618Python初学者的入门教程动手学深度学习PyTorch版李沐和
- PyTorch版本匹配终极指南:手把手教你避开99%的安装坑
被版本支配的恐惧(真实故事)上周我的学弟兴冲冲跑来:“师兄!我照着CSDN教程装PyTorch,结果训练时直接报错cudaruntimeerror!”我一看他的环境——Python3.12强行装PyTorch1.8,搭配CUDA11.6…(此时应有乌鸦飞过)这就像用Win11系统装XP时代的显卡驱动,能不翻车吗?!一、版本对应表(2024最新版)(掏出小本本记重点!!!)这是我整理的最新版本对应关
- anaconda创建python3.7环境_anaconda使用以及创建python3.7+pytorch1.0虚拟环境以及Jupyter notebook初级使用...
weixin_39837124
查看所有已安装的软件包$condalist#packagesinenvironmentatS:\Users\jiangshan\Anaconda3:##NameVersionBuildChannel_ipyw_jlab_nb_ext_conf0.1.0py37_0defaultsalabaster0.7.12py37_0defaultsanaconda2018.12py37_0defaults..
- Anaconda 创建python3.9+pytorch1.10.1+cuda11.3环境
canny_kevin
DeepLearningPythonpythonconda
1.打开AnacondaPowershellPrompt2.创建conda环境condacreate--nameRordAIpython=3.9conda一些命令condainfo--envs:输出中带有【*】号的的就是当前所处的环境condalist:看这个环境下安装的包和版本condainstallnumpyscikit-learn:安装numpysklearn包condaenvremove-
- Pytorch血泪安装史好吗(GPU版本+cuda12.1+python3.9.13)
宇宙最强袋鼠
pytorchpython人工智能
1.安装cuda首先看下自己电脑是CPU还是GPU,看自己电脑对应的cuda版本看右下角英伟达标识,点击组件,我的cuda版本是12.3,但最后发现安12.1比较好2.安装12.1cuda版本对应的cudnn前两步可以看参考:Pytorch的安装,有点繁琐但是很详细,保姆级教程不信你安装不成功(Cuda+Cudnn+Anaconda+Pytorch)_pytorch安装-CSDN博客3.anaco
- 用 PyTorch 构建液态神经网络(LNN):下一代动态深度学习模型
点我头像干啥
AI深度学习pytorch神经网络
引言在深度学习领域,研究人员不断探索更接近生物神经系统工作方式的模型。液态神经网络(LiquidNeuralNetworks,LNN)正是这样一种受生物神经元动态特性启发的创新架构。本文将带你了解LNN的核心概念,并展示如何使用PyTorch实现这种前沿模型。一、什么是液态神经网络?液态神经网络是由MIT研究人员提出的一种新型神经网络架构,它模仿了生物神经系统的几个关键特性:动态连接:神经元之间的
- 第37节:PyTorch数据加载与预处理
点我头像干啥
pytorch人工智能python
1.引言在深度学习项目中,数据加载与预处理是构建高效模型的关键环节。PyTorch作为当前最流行的深度学习框架之一,提供了一套完整且灵活的数据处理工具链。本文将全面介绍PyTorch中的数据加载与预处理机制,涵盖从基础概念到高级技巧的各个方面。2.PyTorch数据加载核心组件2.1Dataset类torch.utils.data.Dataset是PyTorch中所有数据集处理的抽象基类,代表数据
- python学习笔记(深度学习)
天水幼麟
python学习笔记
文章目录1、概述2、学习内容2.1、pytorch常见语法2.1.1、sum2.1.2、广播机制2.1.3、张量1、概述本篇博客用来记录,在深度学习过程中,常用的python语法内容2、学习内容2.1、pytorch常见语法2.1.1、sum在PyTorch中,torch.sum()是一个非常常用的函数,用于对张量(Tensor)进行求和操作。它的核心作用是沿着指定的维度对张量元素进行累加,支持灵
- 深入GPU编程:从硬件架构到内核优化
Kaydeon
硬件架构
深入GPU编程:从硬件架构到内核优化在当今由大型模型驱动的AI时代,GPU集群已成为推动技术进步的核心引擎。然而,仅仅让代码在GPU上“运行”与让其“高效运行”之间存在着巨大的性能鸿沟。对于动辄需要数千甚至数万GPU小时进行训练的超大规模模型而言,这一鸿沟直接关系到研发成本、迭代速度和最终的科研成果。一个未经优化的操作可能在不经意间将训练时间延长数倍,造成巨大的资源浪费。PyTorch、Tenso
- 理解python、anaconda、pytorch以及pycharm之间的关系
幸运小仙
pythonpytorchpycharm
1.Python:编程语言,是基础Python是一种高级的、通用的编程语言。它以其简洁的语法、丰富的库和强大的社区支持而闻名。在数据科学、机器学习和深度学习领域,Python是主要的编程语言。可以使用Python编写代码来处理数据、构建模型、进行实验等。2.Anaconda:Python的发行版,提供便利Anaconda是一个流行的Python发行版,它包含了Python解释器以及许多常用的科学计
- bitsandbytes 入门教程
苏承根
bitsandbytes入门教程项目地址:https://gitcode.com/gh_mirrors/bi/bitsandbytes1.项目介绍bitsandbytes是一个用于PyTorch的库,专注于8位优化器和量化算法。它旨在通过高效的k比特量化技术,使得大型语言模型在资源受限的环境下也能运行,从而提高计算效率并降低内存占用。2.项目快速启动首先,确保你的环境中已经安装了PyTorch。如
- bitsandbytes 安装和配置指南
黎沁颖Desired
bitsandbytes安装和配置指南bitsandbytes8-bitCUDAfunctionsforPyTorch项目地址:https://gitcode.com/gh_mirrors/bi/bitsandbytes1.项目基础介绍和主要编程语言项目基础介绍bitsandbytes是一个轻量级的Python库,主要用于在PyTorch中实现k-bit量化,从而使得大规模语言模型(LLM)更加易
- Python 里 PyTorch 的生成对抗网络架构
Python编程之道
pythonpytorch生成对抗网络ai
Python里PyTorch的生成对抗网络架构关键词:PyTorch、生成对抗网络(GAN)、深度学习、神经网络、计算机视觉、对抗训练、生成模型摘要:本文深入探讨了在PyTorch框架下实现生成对抗网络(GAN)的完整架构。我们将从GAN的基本原理出发,详细讲解其核心组件、数学基础,并通过PyTorch代码实现一个完整的GAN模型。文章涵盖了从理论到实践的各个方面,包括模型设计、训练技巧、常见问题
- CUDA与PyTorch(GPU)的对应关系
CUDA与PyTorch(GPU)的对应关系:(需要自己按需求去找):https://pytorch.org/get-started/previous-versions/表二:CUDAToolkit版本及可用PyTorch对应关系CUDAToolkit版本可用PyTorch版本7.50.4.1,0.3.0,0.2.0,0.1.12-0.1.68.01.1.0,1.0.0,0.4.19.01.1.0
- Python学习Day33
m0_64472246
python打卡学习python
学习来源:浙大疏锦行一、PyTorch和CUDA的安装:给电脑装“超级计算器”通俗解释PyTorch:是一个专门用于深度学习的“工具箱”,类似程序员的“智能积木”,能快速搭建神经网络。CUDA:是NVIDIA显卡的“加速引擎”,相当于给电脑的显卡装了一个“超级计算器”,让它能快速计算复杂的数学问题(如图像识别、数据训练)。安装逻辑:先装CUDA(显卡的“计算器驱动”),再装PyTorch(用这个计
- 人工智能算法工程师(中级)课程12-PyTorch神经网络之LSTM和GRU网络与代码详解1
微学AI
AI算法工程师(中级)课程自然语言处理实战人工智能神经网络算法LSTMgru
大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(中级)课程12-PyTorch神经网络之LSTM和GRU网络与代码详解。在深度学习领域,循环神经网络(RNN)因其处理序列数据的能力而备受关注。然而,传统的RNN存在梯度消失和梯度爆炸的问题,这使得它在长序列任务中的表现不尽如人意。为了解决这一问题,长短时记忆网络(LSTM)和门控循环单元(GRU)应运而生。本文将详细介绍LSTM和GRU
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep