说明:此文的第一部分参考了这里
用python进行线性回归分析非常方便,有现成的库可以使用比如:numpy.linalog.lstsq例子、scipy.stats.linregress例子、pandas.ols例子等。
不过本文使用sklearn库的linear_model.LinearRegression,支持任意维度,非常好用。
一、二维直线的例子
预备知识:线性方程\(y = a * x + b\) 表示平面一直线
下面的例子中,我们根据房屋面积、房屋价格的历史数据,建立线性回归模型。
然后,根据给出的房屋面积,来预测房屋价格。这里是数据来源
import pandas as pd
from io import StringIO
from sklearn import linear_model
import matplotlib.pyplot as plt
# 房屋面积与价格历史数据(csv文件)
csv_data = 'square_feet,price\n150,6450\n200,7450\n250,8450\n300,9450\n350,11450\n400,15450\n600,18450\n'
# 读入dataframe
df = pd.read_csv(StringIO(csv_data))
print(df)
# 建立线性回归模型
regr = linear_model.LinearRegression()
# 拟合
regr.fit(df['square_feet'].reshape(-1, 1), df['price']) # 注意此处.reshape(-1, 1),因为X是一维的!
# 不难得到直线的斜率、截距
a, b = regr.coef_, regr.intercept_
# 给出待预测面积
area = 238.5
# 方式1:根据直线方程计算的价格
print(a * area + b)
# 方式2:根据predict方法预测的价格
print(regr.predict(area))
# 画图
# 1.真实的点
plt.scatter(df['square_feet'], df['price'], color='blue')
# 2.拟合的直线
plt.plot(df['square_feet'], regr.predict(df['square_feet'].reshape(-1,1)), color='red', linewidth=4)
plt.show()
效果图
二、三维平面的例子
预备知识:线性方程\(z = a * x + b * y + c\) 表示空间一平面
由于找不到真实数据,只好自己虚拟一组数据。
import numpy as np
from sklearn import linear_model
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
xx, yy = np.meshgrid(np.linspace(0,10,10), np.linspace(0,100,10))
zz = 1.0 * xx + 3.5 * yy + np.random.randint(0,100,(10,10))
# 构建成特征、值的形式
X, Z = np.column_stack((xx.flatten(),yy.flatten())), zz.flatten()
# 建立线性回归模型
regr = linear_model.LinearRegression()
# 拟合
regr.fit(X, Z)
# 不难得到平面的系数、截距
a, b = regr.coef_, regr.intercept_
# 给出待预测的一个特征
x = np.array([[5.8, 78.3]])
# 方式1:根据线性方程计算待预测的特征x对应的值z(注意:np.sum)
print(np.sum(a * x) + b)
# 方式2:根据predict方法预测的值z
print(regr.predict(x))
# 画图
fig = plt.figure()
ax = fig.gca(projection='3d')
# 1.画出真实的点
ax.scatter(xx, yy, zz)
# 2.画出拟合的平面
ax.plot_wireframe(xx, yy, regr.predict(X).reshape(10,10))
ax.plot_surface(xx, yy, regr.predict(X).reshape(10,10), alpha=0.3)
plt.show()
效果图