def __init__(self, std_range=[0, 0.10], noiseless_item_key='clean'):
self.std_range = std_range
self.key = noiseless_item_key
def __call__(self, data):
noise_std = random.uniform(*self.std_range)
data[self.key] = data['pos']
data['pos'] = data['pos'] + torch.normal(mean=0, std=noise_std, size=data['pos'].size())
return data
报错:
TypeError: normal() received an invalid combination of arguments - got (size=torch.Size, std=float, mean=int, ), but expected one of:
* (Tensor mean, Tensor std, torch.Generator generator, Tensor out)
* (Tensor mean, float std, torch.Generator generator, Tensor out)
* (float mean, Tensor std, torch.Generator generator, Tensor out)
torch1.1.0版本函数定义不同,于是修改代码:
def __call__(self, data):
noise_std = random.uniform(*self.std_range)
data[self.key] = data['pos']
data['pos'] = data['pos'] + torch.tensor(np.random.normal(0,noise_std,size=data['pos'].size()),dtype=data['pos'].dtype)
return data
报错:
RuntimeError: Expected tensor to have CPU Backend, but got tensor with CUDA Backend (while checking arguments for bmm)
修改代码:
def __call__(self, data):
noise_std = random.uniform(*self.std_range)
data[self.key] = data['pos']
noise = torch.tensor(np.random.normal(0, noise_std, size=data['pos'].size()), dtype=data['pos'].dtype)
noise = noise.to(data['pos'].device)
data['pos'] = data['pos'] + noise
return data
参考