2021年三大顶会时间序列论文&代码整理

作者:杰少,炼丹笔记嘉宾

2021年最新时间序列预测论文&代码整理

AAAI 2021

cef58e3edad8249dcd7de6722ead358f.png

  1. Deep Switching Auto-Regressive Factorization: Application to Time Series Forecasting

  • 下载:https://arxiv.org/abs/2009.05135

  • 代码:https://github.com/ostadabbas/DSARF

Dynamic Gaussian Mixture Based Deep Generative Model for Robust Forecasting on Sparse Multivariate Time Series

  • 下载:https://arxiv.org/abs/2103.02164

  • 代码:https://paperswithcode.com/paper/dynamic-gaussian-mixture-based-deep#code

Temporal Latent Autoencoder: A Method for Probabilistic Multivariate Time Series Forecasting

  • 下载:https://arxiv.org/abs/2101.10460

  • 代码:未找到

Synergetic Learning of Heterogeneous Temporal Sequences for Multi-Horizon Probabilistic Forecasting

  • 下载:https://arxiv.org/abs/2102.00431

  • 代码:未找到

Correlative Channel-Aware Fusion for Multi-View Time Series Classification

  • 下载:https://arxiv.org/abs/1911.11561

  • 代码:未找到

Learnable Dynamic Temporal Pooling for Time Series Classification

  • 下载:https://arxiv.org/abs/2104.02577

  • 代码:https://github.com/donalee/DTW-Pool

ShapeNet: A Shapelet-Neural Network Approach for Multivariate Time Series Classification

  • 下载:https://ojs.aaai.org/index.php/AAAI/article/view/17018

  • 代码:未找到

Joint-Label Learning by Dual Augmentation for Time Series Classification

  • 下载:https://ojs.aaai.org/index.php/AAAI/article/view/17071

  • 代码:未找到

Graph Neural Network-Based Anomaly Detection in Multivariate Time Series

  • 下载:https://arxiv.org/abs/2106.06947

  • 代码:https://github.com/d-ailin/GDN

Time Series Anomaly Detection with Multiresolution Ensemble Decoding

  • 下载:https://ojs.aaai.org/index.php/AAAI/article/view/17152

  • 代码:未找到

Outlier Impact Characterization for Time Series Data

  • 下载:https://ojs.aaai.org/index.php/AAAI/article/view/17379

  • 代码:未找到

Generative Semi-Supervised Learning for Multivariate Time Series Imputation

  • 下载:https://ojs.aaai.org/index.php/AAAI/article/view/17086

  • 代码:https://githubmemory.com/repo/zjuwuyy-DL/Generative-Semi-supervised-Learning-for-Multivariate-Time-Series-Imputation

Bridging Towers of Multi-Task Learning with a Gating Mechanism for Aspect-Based Sentiment Analysis and Sequential Metaphor Identification

  • 下载:https://ojs.aaai.org/index.php/AAAI/article/view/17596

  • 代码:未找到

C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer

  • 下载:https://arxiv.org/abs/2012.08976

  • 代码:https://github.com/wswdx/C2F-FWN

Inductive Graph Neural Networks for Spatiotemporal Kriging

  • 下载:https://arxiv.org/abs/2006.07527

  • 代码:https://github.com/Kaimaoge/IGNNK

Temporal-Coded Deep Spiking Neural Network with Easy Training and Robust Performance

  • 下载:https://ojs.aaai.org/index.php/AAAI/article/view/17329

  • 代码:https://github.com/zbs881314/Temporal-Coded-Deep-SNN

Continuous-Time Attention for Sequential Learning

  • 下载:https://ojs.aaai.org/index.php/AAAI/article/view/16875

  • 代码:未找到

ChronoR: Rotation Based Temporal Knowledge Graph Embedding

  • 下载:https://arxiv.org/abs/2103.10379

  • 代码:未找到

Learning from History: Modeling Temporal Knowledge Graphs with Sequential CopyGeneration Networks

  • 下载:https://arxiv.org/abs/2012.08492

  • 代码:未找到

Neural Latent Space Model for Dynamic Networks and Temporal Knowledge Graphs

  • 下载:https://arxiv.org/abs/1911.11455

  • 代码:未找到

ICML 2021

3b4bb939a77d6bfd17625c01983f1545.png

  1. Voice2Series: Reprogramming Acoustic Models for Time Series Classification

  • 下载:https://arxiv.org/abs/2106.09296

  • 代码:https://github.com/huckiyang/Voice2Series-Reprogramming

Neural Rough Differential Equations for Long Time Series

  • 下载:https://arxiv.org/abs/2009.08295

  • 代码:https://github.com/jambo6/neuralRDEs

Necessary and sufficient conditions for causal feature selection in time series with latent common causes

  • 下载:https://arxiv.org/abs/2005.08543

  • 代码:未找到

Autoregressive Denoising Diffusion Models for Multivariate Probabilistic Time Series Forecasting

  • 下载:https://arxiv.org/abs/2101.12072

  • 代码:未找到

Conformal prediction interval for dynamic time-series

  • 下载:https://arxiv.org/abs/2010.09107

  • 代码:https://github.com/hamrel-cxu/EnbPI

Z-GCNETs: Time Zigzags at Graph Convolutional Networks for Time Series Forecasting

  • 下载:https://arxiv.org/abs/2105.04100

  • 代码:https://github.com/Z-GCNETs/Z-GCNETs

End-to-End Learning of Coherent Probabilistic Forecasts for Hierarchical Time Series

  • 下载:https://proceedings.mlr.press/v139/rangapuram21a.html

  • 代码:https://github.com/awslabs/gluon-ts

Approximation Theory of Convolutional Architectures for Time Series Modelling

  • 下载:http://proceedings.mlr.press/v139/jiang21d/jiang21d.pdf

  • 代码:未找到

Whittle Networks: A Deep Likelihood Model for Time Series

  • 下载:http://proceedings.mlr.press/v139/yu21c.html

  • 代码:https://github.com/ml-research/WhittleNetworks

Explaining Time Series Predictions with Dynamic Masks

  • 下载:https://arxiv.org/abs/2106.05303

  • 代码:https://github.com/JonathanCrabbe/Dynamask

ST-DETR: Spatio-Temporal Object Traces Attention Detection Transformer

- 下载:https://arxiv.org/pdf/2107.05887.pdf

- 代码:未找到
  1. Temporal Dependencies in Feature Importance for Time Series Predictions

  • 下载:https://arxiv.org/abs/2107.14317

  • 代码:未找到

IJCAI

becc4a499473f85c2ecdb2ad7f608f06.png

  1. Time-Aware Multi-Scale RNNs for Time Series Modeling

  • 下载:https://www.ijcai.org/proceedings/2021/315

  • 代码:https://github.com/qianlima-lab/TAMS-RNNs

Two Birds with One Stone: Series Saliency for Accurate and Interpretable Multivariate Time Series Forecasting

  • 下载:https://www.ijcai.org/proceedings/2021/397

  • 代码:未找到

TE-ESN: Time Encoding Echo State Network for Prediction Based on Irregularly Sampled Time Series Data

  • 下载:https://arxiv.org/abs/2105.00412

  • 代码:未找到

Time-Series Representation Learning via Temporal and Contextual Contrasting

  • 下载:https://arxiv.org/abs/2106.14112

  • 代码:https://github.com/emadeldeen24/TS-TCC

Time Series Data Augmentation for Deep Learning: A Survey

  • 下载:https://arxiv.org/abs/2002.12478

  • 代码:无

Uncertain Time Series Classification

  • 下载:https://www.ijcai.org/proceedings/2021/0683.pdf

  • 代码:https://github.com/frankl1/ustc

Learning Temporal Causal Sequence Relationships from Real-Time Time-

  • 下载:https://arxiv.org/abs/1905.12262

  • 代码:未找到

Adversarial Spectral Kernel Matching for Unsupervised Time Series Domain Adaptation

  • 下载:https://www.ijcai.org/proceedings/2021/378

  • 代码:https://github.com/jarheadjoe/Adv-spec-ker-matching

Multi-series Time-aware Sequence Partitioning for Disease Progression Modeling

  • 下载:https://www.ijcai.org/proceedings/2021/493

  • 代码:未找到

参考文献

e4976e06e7aede06e61efe928730f1d4.png

  1. https://www.yanxishe.com/reportDetail/26029

  2. https://icml.cc/Conferences/2021/Schedule?type=Poster

  3. https://ijcai-21.org/program-main-track/

  4. https://dreamhomes.top/posts/202108241839/

2021年三大顶会时间序列论文&代码整理_第1张图片

 
   
 
   
 
   
 
   
往期精彩回顾




适合初学者入门人工智能的路线及资料下载机器学习及深度学习笔记等资料打印机器学习在线手册深度学习笔记专辑《统计学习方法》的代码复现专辑
AI基础下载黄海广老师《机器学习课程》视频课黄海广老师《机器学习课程》711页完整版课件

本站qq群554839127,加入微信群请扫码:

2021年三大顶会时间序列论文&代码整理_第2张图片

你可能感兴趣的:(人工智能,机器学习,php,java,python)