作者:杰少,炼丹笔记嘉宾
2021年最新时间序列预测论文&代码整理
AAAI 2021
Deep Switching Auto-Regressive Factorization: Application to Time Series Forecasting
下载:https://arxiv.org/abs/2009.05135
代码:https://github.com/ostadabbas/DSARF
Dynamic Gaussian Mixture Based Deep Generative Model for Robust Forecasting on Sparse Multivariate Time Series
下载:https://arxiv.org/abs/2103.02164
代码:https://paperswithcode.com/paper/dynamic-gaussian-mixture-based-deep#code
Temporal Latent Autoencoder: A Method for Probabilistic Multivariate Time Series Forecasting
下载:https://arxiv.org/abs/2101.10460
代码:未找到
Synergetic Learning of Heterogeneous Temporal Sequences for Multi-Horizon Probabilistic Forecasting
下载:https://arxiv.org/abs/2102.00431
代码:未找到
Correlative Channel-Aware Fusion for Multi-View Time Series Classification
下载:https://arxiv.org/abs/1911.11561
代码:未找到
Learnable Dynamic Temporal Pooling for Time Series Classification
下载:https://arxiv.org/abs/2104.02577
代码:https://github.com/donalee/DTW-Pool
ShapeNet: A Shapelet-Neural Network Approach for Multivariate Time Series Classification
下载:https://ojs.aaai.org/index.php/AAAI/article/view/17018
代码:未找到
Joint-Label Learning by Dual Augmentation for Time Series Classification
下载:https://ojs.aaai.org/index.php/AAAI/article/view/17071
代码:未找到
Graph Neural Network-Based Anomaly Detection in Multivariate Time Series
下载:https://arxiv.org/abs/2106.06947
代码:https://github.com/d-ailin/GDN
Time Series Anomaly Detection with Multiresolution Ensemble Decoding
下载:https://ojs.aaai.org/index.php/AAAI/article/view/17152
代码:未找到
Outlier Impact Characterization for Time Series Data
下载:https://ojs.aaai.org/index.php/AAAI/article/view/17379
代码:未找到
Generative Semi-Supervised Learning for Multivariate Time Series Imputation
下载:https://ojs.aaai.org/index.php/AAAI/article/view/17086
代码:https://githubmemory.com/repo/zjuwuyy-DL/Generative-Semi-supervised-Learning-for-Multivariate-Time-Series-Imputation
Bridging Towers of Multi-Task Learning with a Gating Mechanism for Aspect-Based Sentiment Analysis and Sequential Metaphor Identification
下载:https://ojs.aaai.org/index.php/AAAI/article/view/17596
代码:未找到
C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer
下载:https://arxiv.org/abs/2012.08976
代码:https://github.com/wswdx/C2F-FWN
Inductive Graph Neural Networks for Spatiotemporal Kriging
下载:https://arxiv.org/abs/2006.07527
代码:https://github.com/Kaimaoge/IGNNK
Temporal-Coded Deep Spiking Neural Network with Easy Training and Robust Performance
下载:https://ojs.aaai.org/index.php/AAAI/article/view/17329
代码:https://github.com/zbs881314/Temporal-Coded-Deep-SNN
Continuous-Time Attention for Sequential Learning
下载:https://ojs.aaai.org/index.php/AAAI/article/view/16875
代码:未找到
ChronoR: Rotation Based Temporal Knowledge Graph Embedding
下载:https://arxiv.org/abs/2103.10379
代码:未找到
Learning from History: Modeling Temporal Knowledge Graphs with Sequential CopyGeneration Networks
下载:https://arxiv.org/abs/2012.08492
代码:未找到
Neural Latent Space Model for Dynamic Networks and Temporal Knowledge Graphs
下载:https://arxiv.org/abs/1911.11455
代码:未找到
ICML 2021
Voice2Series: Reprogramming Acoustic Models for Time Series Classification
下载:https://arxiv.org/abs/2106.09296
代码:https://github.com/huckiyang/Voice2Series-Reprogramming
Neural Rough Differential Equations for Long Time Series
下载:https://arxiv.org/abs/2009.08295
代码:https://github.com/jambo6/neuralRDEs
Necessary and sufficient conditions for causal feature selection in time series with latent common causes
下载:https://arxiv.org/abs/2005.08543
代码:未找到
Autoregressive Denoising Diffusion Models for Multivariate Probabilistic Time Series Forecasting
下载:https://arxiv.org/abs/2101.12072
代码:未找到
Conformal prediction interval for dynamic time-series
下载:https://arxiv.org/abs/2010.09107
代码:https://github.com/hamrel-cxu/EnbPI
Z-GCNETs: Time Zigzags at Graph Convolutional Networks for Time Series Forecasting
下载:https://arxiv.org/abs/2105.04100
代码:https://github.com/Z-GCNETs/Z-GCNETs
End-to-End Learning of Coherent Probabilistic Forecasts for Hierarchical Time Series
下载:https://proceedings.mlr.press/v139/rangapuram21a.html
代码:https://github.com/awslabs/gluon-ts
Approximation Theory of Convolutional Architectures for Time Series Modelling
下载:http://proceedings.mlr.press/v139/jiang21d/jiang21d.pdf
代码:未找到
Whittle Networks: A Deep Likelihood Model for Time Series
下载:http://proceedings.mlr.press/v139/yu21c.html
代码:https://github.com/ml-research/WhittleNetworks
Explaining Time Series Predictions with Dynamic Masks
下载:https://arxiv.org/abs/2106.05303
代码:https://github.com/JonathanCrabbe/Dynamask
ST-DETR: Spatio-Temporal Object Traces Attention Detection Transformer
- 下载:https://arxiv.org/pdf/2107.05887.pdf
- 代码:未找到
Temporal Dependencies in Feature Importance for Time Series Predictions
下载:https://arxiv.org/abs/2107.14317
代码:未找到
IJCAI
Time-Aware Multi-Scale RNNs for Time Series Modeling
下载:https://www.ijcai.org/proceedings/2021/315
代码:https://github.com/qianlima-lab/TAMS-RNNs
Two Birds with One Stone: Series Saliency for Accurate and Interpretable Multivariate Time Series Forecasting
下载:https://www.ijcai.org/proceedings/2021/397
代码:未找到
TE-ESN: Time Encoding Echo State Network for Prediction Based on Irregularly Sampled Time Series Data
下载:https://arxiv.org/abs/2105.00412
代码:未找到
Time-Series Representation Learning via Temporal and Contextual Contrasting
下载:https://arxiv.org/abs/2106.14112
代码:https://github.com/emadeldeen24/TS-TCC
Time Series Data Augmentation for Deep Learning: A Survey
下载:https://arxiv.org/abs/2002.12478
代码:无
Uncertain Time Series Classification
下载:https://www.ijcai.org/proceedings/2021/0683.pdf
代码:https://github.com/frankl1/ustc
Learning Temporal Causal Sequence Relationships from Real-Time Time-
下载:https://arxiv.org/abs/1905.12262
代码:未找到
Adversarial Spectral Kernel Matching for Unsupervised Time Series Domain Adaptation
下载:https://www.ijcai.org/proceedings/2021/378
代码:https://github.com/jarheadjoe/Adv-spec-ker-matching
Multi-series Time-aware Sequence Partitioning for Disease Progression Modeling
下载:https://www.ijcai.org/proceedings/2021/493
代码:未找到
参考文献
https://www.yanxishe.com/reportDetail/26029
https://icml.cc/Conferences/2021/Schedule?type=Poster
https://ijcai-21.org/program-main-track/
https://dreamhomes.top/posts/202108241839/
往期精彩回顾
适合初学者入门人工智能的路线及资料下载机器学习及深度学习笔记等资料打印机器学习在线手册深度学习笔记专辑《统计学习方法》的代码复现专辑
AI基础下载黄海广老师《机器学习课程》视频课黄海广老师《机器学习课程》711页完整版课件
本站qq群554839127,加入微信群请扫码: