引用来源
@article{MODNet,
author = {Zhanghan Ke and Kaican Li and Yurou Zhou and Qiuhua Wu and Xiangyu Mao and Qiong Yan and Rynson W.H. Lau},
title = {Is a Green Screen Really Necessary for Real-Time Portrait Matting?},
journal={ArXiv},
volume={abs/2011.11961},
year = {2020},
}
利用神经网络实现图片抠像,虽然比不上PS高手精细的抠像成果,但实现自动抠像还是蛮不错滴。本文介绍MODNet抠像。
克隆MODNet到本地目录 MODNet
git clone https://github.com/ZHKKKe/MODNet
requirements.txt包括如下:
numpy
gdown
opencv-python
pillow
torch == 1.1.0
torchvision == 0.3.0
安装运行所需的环境
pip install -r requirements.txt
预训练模型在这里 :
modnet_photographic_portrait_matting.ckpt
模型百度网盘:在这里
密码:gchf
把模型下载到目录:MODNet/pretrained,下面运行需要加载此模型。
现在,工作目录是MODNet,在其目录下建立输入图片和输出图片的目录:
input-img, output-img
把需要抠图的图片放到input-img
MODNet目录下,运行
python -m demo.image_matting.colab.inference-1 \
--input-path input-img \
--output-path output-img \
--ckpt-path pretrained/modnet_photographic_portrait_matting.ckpt
现在可以从output-img中找到已经抠好的图片xxx_fg.png,遮罩图片xxx_matte.png
看看MODNet模型的抠图效果
python程序如下。原作者的程序中只给出遮罩matte,没有抠图结果。鄙人不才,添加了抠出的前景图片,供参考。
import os
import sys
import argparse
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
from src.models.modnet import MODNet
if __name__ == '__main__':
# define cmd arguments
parser = argparse.ArgumentParser()
parser.add_argument('--input-path', type=str, help='path of input images')
parser.add_argument('--output-path', type=str, help='path of output images')
parser.add_argument('--ckpt-path', type=str, help='path of pre-trained MODNet')
args = parser.parse_args()
# check input arguments
if not os.path.exists(args.input_path):
print('Cannot find input path: {0}'.format(args.input_path))
exit()
if not os.path.exists(args.output_path):
print('Cannot find output path: {0}'.format(args.output_path))
exit()
if not os.path.exists(args.ckpt_path):
print('Cannot find ckpt path: {0}'.format(args.ckpt_path))
exit()
# define hyper-parameters
ref_size = 512
# define image to tensor transform
im_transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]
)
# create MODNet and load the pre-trained ckpt
modnet = MODNet(backbone_pretrained=False)
modnet = nn.DataParallel(modnet).cuda()
modnet.load_state_dict(torch.load(args.ckpt_path))
modnet.eval()
# 注:程序中的数字仅表示某张输入图片尺寸,如1080x1440,此处只为记住其转换过程。
# inference images
im_names = os.listdir(args.input_path)
for im_name in im_names:
print('Process image: {0}'.format(im_name))
# read image
im = Image.open(os.path.join(args.input_path, im_name))
# unify image channels to 3
im = np.asarray(im)
if len(im.shape) == 2:
im = im[:, :, None]
if im.shape[2] == 1:
im = np.repeat(im, 3, axis=2)
elif im.shape[2] == 4:
im = im[:, :, 0:3]
im_org = im # 保存numpy原始数组 (1080,1440,3)
# convert image to PyTorch tensor
im = Image.fromarray(im)
im = im_transform(im)
# add mini-batch dim
im = im[None, :, :, :]
# resize image for input
im_b, im_c, im_h, im_w = im.shape
if max(im_h, im_w) < ref_size or min(im_h, im_w) > ref_size:
if im_w >= im_h:
im_rh = ref_size
im_rw = int(im_w / im_h * ref_size)
elif im_w < im_h:
im_rw = ref_size
im_rh = int(im_h / im_w * ref_size)
else:
im_rh = im_h
im_rw = im_w
im_rw = im_rw - im_rw % 32
im_rh = im_rh - im_rh % 32
im = F.interpolate(im, size=(im_rh, im_rw), mode='area')
# inference
_, _, matte = modnet(im.cuda(), True) # 从模型获得的 matte ([1,1,512, 672])
# resize and save matte,foreground picture
matte = F.interpolate(matte, size=(im_h, im_w), mode='area') #内插,扩展到([1,1,1080,1440]) 范围[0,1]
matte = matte[0][0].data.cpu().numpy() # torch 张量转换成numpy (1080, 1440)
matte_name = im_name.split('.')[0] + '_matte.png'
Image.fromarray(((matte * 255).astype('uint8')), mode='L').save(os.path.join(args.output_path, matte_name))
matte_org = np.repeat(np.asarray(matte)[:, :, None], 3, axis=2) # 扩展到 (1080, 1440, 3) 以便和im_org计算
foreground = im_org * matte_org + np.full(im_org.shape, 255) * (1 - matte_org) # 计算前景,获得抠像
fg_name = im_name.split('.')[0] + '_fg.png'
Image.fromarray(((foreground).astype('uint8')), mode='RGB').save(os.path.join(args.output_path, fg_name))