install.packages("ggExtra")
library(ggExtra)
piris <- ggplot(iris, aes(Sepal.Length, Sepal.Width,
color = Species)) +
geom_point(shape=21, size = 3,stroke = 1.2)+
scale_color_npg()+
theme_bw()+
theme(legend.position = c(.1,.86))
ggMarginal(piris, type= 'density',
groupFill = TRUE)
相关系数:
install.packages("ggcorrplot")
library(ggcorrplot)
mtcars2 <- mtcars %>% select(c('mpg','disp','hp',
'drat','wt','qsec'))
corr <- round(cor(mtcars2), 1)
corr
p1 <- ggcorrplot(corr, method = 'square')
p2 <- ggcorrplot(corr, method = "circle")
plot_grid(p1,p2,ncol=2,labels = LETTERS[1:2],align = c('v','h'))
相关系数
p1 <- ggcorrplot(
corr,
type = "lower",
outline.color = "white",
colors = c("#6D9EC1", "white", "#E46726")
)
p2 <- ggcorrplot(
corr,
type = "upper",
outline.color = "white",
colors = c("#084594", "white", "#ef3b2c")
)
p3 <- ggcorrplot(corr,
type = "lower",
lab = TRUE)
p.mat <- cor_pmat(mtcars2)
p4 <- ggcorrplot(corr,
type = "lower",
p.mat = p.mat)
plot_grid(p1,p2,p3,p4,ncol=2,labels = LETTERS[1:4],align = c('v','h'))
生存曲线
install.packages("survminer")
library(survminer)
library(survival)
p2 <- ggsurvplot(
fit,
data = lung,
size = 1,
palette = c("#E7B800", "#2E9FDF"),
conf.int = TRUE,
pval = TRUE,
risk.table = TRUE,
risk.table.col = "strata",
legend.labs =
c("Male", "Female"),
risk.table.height = 0.25,
ggtheme = theme_bw(),
legend.title = 'Sex',
legend = c(.85,.8)
)