最近在看清风的数学建模视频,其中有两道题:
# 第一步,绘制函数图像
import numpy as np
import matplotlib.pyplot as plt
def func(x):
return 11*np.sin(x)+7*np.cos(5*x)
x0 = np.linspace(-3,3,1000)
y0 = func(x0)
fig,ax = plt.subplots()
ax.plot(x0,y0)
ax.set_title('y = 11sin(x)+7cos(5x)')
# 第二步,设置粒子群算法的参数
n = 10 # 粒子数量
narvs = 1 # 变量个数
c1 = 2 # 个体学习因子
c2 = 2 # 社会学习因子
w = 0.9 # 惯性权重
K = 50 # 迭代次数
vmax = (3-(-3))*0.2 # 粒子的最大速度
x_lb = -3 # x的下界
x_ub = 3 # x的上界
# 第三步,初始化粒子
x = x_lb + (x_ub-x_lb)*np.random.rand(n)
v = -vmax + 2*vmax*np.random.rand(n)
# 第四步,计算适应度
fit = func(x) # 计算每个粒子的适应度
pbest = x # 初始化这n个例子迄今为止找到的最佳位置
ind = np.argmax(fit) # 找到适应度最大的那个粒子的下标
gbest = x[ind]
gbest_total = np.zeros(K)
# 第五步,更新粒子速度和位置
for j in range(K): # 外层循环,共K次
v = w*v + c1*np.random.rand(n)*(pbest-x) + c2*np.random.rand(n)*(gbest-x)
v[np.where(v<-vmax)] = -vmax # 速度小于-vmax的元素赋值为-vmax
v[np.where(v>vmax)] = vmax # 速度大于vmax的元素赋值为vmax
x = x + v # 更新第i个粒子的位置
x[np.where(x<x_lb)] = x_lb
x[np.where(x>x_ub)] = x_ub
# 第六步,重新计算适应度并找到最优粒子
fit = func(x) # 重新计算n个粒子的适应度
for k in range(n): # 更新第k个粒子迄今为止找到的最佳位置
if fit[k]>func(pbest[k]):
pbest[k] = x[k]
if np.max(fit)>func(gbest): # 更新所有粒子迄今找到的最佳位置
gbest = x[np.argmax(fit)]
gbest_total[j] = func(gbest)
ax.scatter(x,fit,c='r',marker='x')
ax.scatter(gbest,func(gbest),c='r')
ax.plot(gbest*np.ones(10),np.linspace(-20,func(gbest),10),'--')
ax.plot(np.linspace(-3,gbest,10),func(gbest)*np.ones(10),'--')
ax.set_ylim(-20,20)
ax.autoscale(axis='x',tight=True)
fig,ax = plt.subplots()
ax.plot(np.arange(K),gbest_total)
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
ax.set_title('算法找到的最大值随优化次数的变化曲线')
ax.set_xlabel('循环次数')
ax.autoscale(axis='x',tight=True)
print('找到的最优解为:',func(gbest))
找到的最优解为: 17.492618154736594
红色叉号
表示最后一次循环结束后粒子所在的位置;红色圆圈(用橙色和绿色的线标识横纵坐标值)
表示算法寻到的最优解。# 第一步,绘制函数图像
import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d
def func(x,y):
return x**2+y**2-x*y-10*x-4*y+60
x0 = np.linspace(-15,15,100)
y0 = np.linspace(-15,15,100)
x0,y0 = np.meshgrid(x0,y0)
z0 = func(x0,y0)
fig = plt.figure(constrained_layout=True)
ax = fig.add_subplot(projection='3d')
ax.plot_surface(x0,y0,z0,cmap=plt.cm.viridis,alpha=0.7)
#ax.plot_wireframe(x0,y0,z0) # 另一种绘图方式
ax.set_title('$y = x_1^2+x_2^2-x_1x_2-10x_1-4x_2+60$')
# 第二步,设置粒子群算法的参数
n = 30 # 粒子数量
narvs = 2 # 变量个数
c1 = 2 # 个体学习因子
c2 = 2 # 社会学习因子
w = 0.9 # 惯性权重
K = 40 # 迭代次数
vxmax = np.array([(15-(-15))*0.2,(15-(-15))*0.2]) # 粒子在x方向的最大速度
x_lb = np.array([-15,-15]) # x和y的下界
x_ub = np.array([15,15]) # x和y的上界
# 第三步,初始化粒子
x = x_lb + (x_ub-x_lb)*np.random.rand(n,narvs)
v = -vxmax + 2*vxmax*np.random.rand(n,narvs)
# 第四步,计算适应度
fit = func(x[:,0],x[:,1]) # 计算每个粒子的适应度
pbest = x # 初始化这n个例子迄今为止找到的最佳位置
ind = np.argmax(fit) # 找到适应度最大的那个粒子的下标
gbest = x[ind,:]
gbest_total = np.zeros(K)
# 第五步,更新粒子速度和位置
for j in range(K): # 外层循环,共K次
for p in range(n):
v[p,:] = w*v[p,:] + c1*np.random.rand(narvs)*(pbest[p,:]-x[p,:]) + c2*np.random.rand(narvs)*(gbest-x[p,:])
loc_v = np.where(v<-vxmax)
v[loc_v] = -vxmax[loc_v[1]] # 速度小于-vmax的元素赋值为-vmax
loc_v = np.where(v>vxmax)
v[loc_v] = vxmax[loc_v[1]] # 速度大于vmax的元素赋值为vmax
x = x + v # 更新第i个粒子的位置
loc_x = np.where(x<x_lb)
x[loc_x] = x_lb[loc_x[1]]
loc_x = np.where(x>x_ub)
x[loc_x] = x_ub[loc_x[1]]
# 第六步,重新计算适应度并找到最优粒子
fit = func(x[:,0],x[:,1]) # 重新计算n个粒子的适应度
for k in range(n): # 更新第k个粒子迄今为止找到的最佳位置
if fit[k]<func(pbest[k,0],pbest[k,1]):
pbest[k,:] = x[k,:]
if np.min(fit)<func(gbest[0],gbest[1]): # 更新所有粒子迄今找到的最佳位置
gbest = x[np.argmin(fit),:]
gbest_total[j] = func(gbest[0],gbest[1])
ax.scatter(x[:,0],x[:,1],fit,c='r',marker='x')
fig,ax = plt.subplots()
ax.plot(np.arange(K),gbest_total)
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来显示负号
ax.set_title('算法找到的最小值随优化次数的变化曲线')
ax.set_xlabel('循环次数')
ax.autoscale(axis='x',tight=True)
print('找到的最优解为:',func(gbest[0],gbest[1]))
图中红色叉号
表示最后一次循环结束后粒子所在的位置。