- 基于transformer实现机器翻译(日译中)
小白_laughter
课程学习transformer机器翻译深度学习
文章目录一、引言二、使用编码器—解码器和注意力机制来实现机器翻译模型2.0含注意力机制的编码器—解码器2.1读取和预处理数据2.2含注意力机制的编码器—解码器2.3训练模型2.4预测不定长的序列2.5评价翻译结果三、使用Transformer架构和PyTorch深度学习库来实现的日中机器翻译模型3.1、导入必要的库3.2、数据集准备3.3、准备分词器3.4、构建TorchText词汇表对象,并将句
- 【NLP 39、激活函数 ⑤ Swish激活函数】
L_cl
NLP自然语言处理人工智能
我的孤独原本是座荒岛,直到你称成潮汐,原来爱是让个体失序的永恒运动——25.2.25Swish激活函数是一种近年来在深度学习中广泛应用的激活函数,由GoogleBrain团队在2017年提出。其核心设计结合了Sigmoid门控机制和线性输入的乘积,通过引入平滑性和非单调性来提升模型性能。一、数学定义与变体1.基础形式Swish的标准表达式为:Swish(x)=x⋅σ(βx)其中:σ(x)是Sigm
- QT::从Debug切换成Release模式后,qDebug输出不写入日志
lkasi
QTQTRelesaeDebug
问题描述:从Debug切换成Release模式后,qDebug输出不写入日志解决方法:在.pro中加入DEFINES+=QT_MESSAGELOGCONTEXTQMAKE_CXXFLAGS_RELEASE=$$QMAKE_CFLAGS_RELEASE_WITH_DEBUGINFOQMAKE_LFLAGS_RELEASE=$$QMAKE_LFLAGS_RELEASE_WITH_DEBUGINFO注意
- Bug:QT不能生成可执行文件
lkasi
bug
问题描述:为了生成可执行文件,将项目以release方式进行构建,并且在.pro文件中加入TEMPLATE=app#这生成一个exeQMAKE_LFLAGS+=-no-pie并且执行runqmake,生成的仍是sharedlibrary!!!解决方法:将下面代码放在.pro靠下的位置,并且再次执行runqmake,再构建就成功了TEMPLATE=app#这生成一个exeQMAKE_LFLAGS+=
- AI大模型零基础金融人如何一周自学大模型,从零基础到入门,看这篇就够了!
冻感糕人~
人工智能金融AI大模型LLM大模型技术大模型学习路线大模型基础
前几天参加了字节跳动在上海举办的火山引擎Force原动力大会,OpenAI也连续开了12天发布会,最近堪称科技界的春晚了。如果说2022年ChatGPT横空出世把人工智能的发展带上了一个新的台阶,那么2024年末,大模型对工作、生活的全面“侵入”让我们越来越接近库兹韦尔所描述的那个奇点时刻。作为金融民工,我们想通过这篇文章讲讲从用户的角度如何一周快速掌握大模型,以及为什么我建议每一个金融从业人员(
- SeisMoLLM: Advancing Seismic Monitoring via Cross-modal Transfer with Pre-trained Large Language
UnknownBody
LLMDailyMultimodal语言模型人工智能自然语言处理
摘要深度学习的最新进展给地震监测带来了革命性变化,但开发一个能在多个复杂任务中表现出色的基础模型仍然充满挑战,尤其是在处理信号退化或数据稀缺的情况时。本文提出SeisMoLLM,这是首个利用跨模态迁移进行地震监测的基础模型,它无需在地震数据集上进行直接预训练,就能充分发挥大规模预训练大语言模型的强大能力。通过精心设计的波形标记化处理和对预训练GPT-2模型的微调,SeisMoLLM在DiTing和
- 如何通过深度学习优化操作系统中的故障诊断与恢复机制
金枝玉叶9
程序员知识储备1程序员知识储备2程序员知识储备3深度学习人工智能
如何通过深度学习优化操作系统中的故障诊断与恢复机制(副标题:智能监控、自适应诊断与自动恢复——操作系统故障自愈的新方向)摘要随着现代操作系统在多核、高并发和分布式环境中的广泛应用,系统故障及其恢复问题日益成为影响系统稳定性和业务连续性的关键挑战。传统的故障诊断方法依赖于预设规则和人工干预,难以应对复杂多变的故障场景。本文提出了一种基于深度学习的故障诊断与恢复机制,通过对大量历史日志、监控数据和故障
- 成功案例丨开发时间从1小时缩短到3分钟:如何利用历史数据训练AI模型,预测设计性能?
Altair澳汰尔
PhysicsAI仿真AI机器学习HyperWorks数据分析
案例简介PhysicsAI™助力HEROMOTOCORP实现设计效率提升99%印度领先的跨国摩托车和踏板车制造商HeroMotoCorpLtd.(以下简称Hero)致力于通过将人工智能(AI)和机器学习技术融入有限元分析(FEA)流程,以加速产品开发周期。在其首个AI驱动项目——摩托车把手设计优化中,Hero采用了PhysicsAI™几何深度学习解决方案,利用历史数据训练AI模型并预测设计性能。A
- 关于两次项目的学习感悟
罗婕斯特
大数据
经过这两次项目,我学到了以下几点:1.模块化与结构化思维:代码展示了如何将深度学习任务分解为多个模块(如数据加载、模型定义、训练循环、评估等)。这种模块化的思维方式不仅适用于编程,也可以应用于解决复杂问题时的结构化思考。2.细节决定成败:代码中涉及了许多细节,如数据预处理、学习率调整、损失函数的选择等。这些细节对模型的最终性能有着重要影响。这提醒我们,在解决实际问题时,细节往往决定成败,需要耐心和
- 数据分析与AI丨AI Fabric:数据和人工智能架构的未来
Altair澳汰尔
数据分析aiRapidMiner知识图谱人工智能
AIFabric架构是模块化、可扩展且面向未来的,是现代商业环境中企业实现卓越的关键。在当今商业环境中,数据分析和人工智能领域发展可谓日新月异。几乎每天都有新兴技术诞生,新的应用场景不断涌现,前沿探索持续拓展。可遗憾的是,众多企业在利用数据和人工智能方面,脚步总是滞后。这是每个行业进行创新和获得竞争优势的冲刺阶段,但正如大多数企业时常感受到的那样,大规模实施下一代数据和AI工具说起来容易做起来难。
- Manus演示案例: 英伟达财务估值建模 解锁投资洞察的深度剖析
ylfhpy
Manus深度学习人工智能机器学习机器翻译Manus
在当今瞬息万变的金融投资领域,精准剖析企业价值是投资者决胜市场的关键。英伟达(NVIDIA),作为科技行业的耀眼明星,其在人工智能和半导体领域的卓越表现备受瞩目。Manus凭借专业的财务估值建模能力,深入挖掘英伟达的潜在价值,为投资者提供了一份极具价值的分析报告。Manus在接到为英伟达进行详细财务估值建模的任务后,迅速且有条不紊地开展工作。数据收集是建模的基石,其重要性不言而喻。在收集英伟达公司
- gitlab 中文路径,无法下载?如何解决??
bug菌¹
全栈Bug调优(实战版)#CSDN问答解惑(全栈版)gitlabelasticsearchgithub
本文收录于《CSDN问答解答》专栏,主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由;同时,欢迎大家关注&&收藏&&订阅!持续更新中,up!up!up!!问题描述 gitlab中文路径,无法下载。问题遇到的现象和发生背景公司有人想从从网站下载项目的某个文件夹,当文件夹目录为英文时,能够正常下载,如果目录中有中文就会出现下载错误。此时
- Python学习指南:系统化路径 + 避坑建议
程之编
Python全栈通关秘籍青少年编程python开发语言人工智能机器学习
新手小白学习编程就像搭积木——需要从基础开始,逐步构建知识体系。以下是为你量身定制的Python学习路径,帮你告别杂乱,高效入门!一、学习前的关键认知明确目标:想用Python做什么?数据分析(如Excel自动化、可视化)Web开发(如搭建网站)人工智能(如机器学习)自动化办公(如处理文件、邮件)目标不同,后续学习侧重点不同(但基础通用)。避免误区:❌只看教程不写代码✅边学边动手,哪怕抄代码也要运
- 大语言模型原理基础与前沿 双层路由多模态融合、多任务学习和模块化架构
AI智能涌现深度研究
AI大语言模型和知识图谱融合Python入门实战DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿:双层路由多模态融合、多任务学习和模块化架构关键词:大语言模型、双层路由、多模态融合、多任务学习、模块化架构、神经网络、自然语言处理1.背景介绍大语言模型(LargeLanguageModels,LLMs)已经成为人工智能和自然语言处理领域的重要研究方向。随着GPT-3、BERT等模型的出现,大语言模型在各种任务中展现出了惊人的性能。然而,随着模型规模的不断扩大和应用场景的
- 新的一年,新的感受和成长
是小天才哦
#高职生闲谈服务器
本人现在是工作快2年的打工人,我是前年7月份毕业的大专生。其实我在大学刚开始的时候因为体验过社会的毒打,所以发誓一定要好好学习,而我也的确好好学习了,在学校2年时间里,大部分时间都是在图书馆里面看书,主要为啥天天在图书馆很大原因是本专业的课程自己不是非常喜欢(我是人工智能专业,人工智能专业大专学历出来基本也是打框的无聊活)所以我就自己学习了系统运维方向,这个过程也考取了RHCE认证,也是因为这个认
- Python机器学习实战:构建序列到序列(Seq2Seq)模型处理翻译任务
AGI大模型与大数据研究院
程序员提升自我硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
Python机器学习实战:构建序列到序列(Seq2Seq)模型处理翻译任务1.背景介绍1.1问题的由来翻译是跨语言沟通的重要桥梁,随着全球化进程的加速,翻译需求日益增长。传统的机器翻译方法主要依赖于规则和统计方法,如基于短语的翻译、基于统计的机器翻译等。然而,这些方法难以处理复杂的语言现象,翻译质量参差不齐。近年来,随着深度学习技术的快速发展,基于神经网络序列到序列(Sequence-to-Seq
- Python第十六课:深度学习入门 | 神经网络解密
程之编
Python全栈通关秘籍python神经网络青少年编程
本节目标理解生物神经元与人工神经网络的映射关系掌握激活函数与损失函数的核心作用使用Keras构建手写数字识别模型可视化神经网络的训练过程掌握防止过拟合的基础策略一、神经网络基础(大脑的数字化仿生)1.神经元对比生物神经元人工神经元树突接收信号输入层接收特征数据细胞体整合信号加权求和(∑(权重×输入)+偏置)轴突传递电信号激活函数处理输出2.核心组件解析激活函数:神经元的"开关"(如ReLU:max
- 【大模型开发】深入解析 DeepSpeed:原理、核心技术与示例代码
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习大模型开发大模型微调deepseekdeepspeedpython人工智能pytorch
深入解析DeepSpeed:原理、核心技术与示例代码DeepSpeed是由微软开源的高性能深度学习训练优化引擎,专注于帮助研究人员和工程团队在分布式环境中高效地训练超大规模模型。其核心目标是提供高吞吐、低内存占用、低成本的分布式训练方案,让数千亿甚至万亿级参数模型的训练成为可能。本文将从DeepSpeed的核心原理、关键组件、代码示例及实现过程详解等方面做详细阐述,帮助读者更好地理解并使用Deep
- Web UI自动化测试--元素操作
每 天 早 睡
持续集成与自动化测试ui
一、介绍什么是webui自动化测试1、通过代码来模拟人的手工操作,执行测试内容2、自动化是为了代替重复的手工操作,提高测试效率ui自动化的价值:1、回归速度的对比,以前进行全量回归测试需要x天,现在有没有减少2、负责功能测试的同事,是不是有更多的时间测试新需求了3、自动化测试不是为了发现bug,而是为手工测试节省回归时间ui自动化的原理(selenium与webdriver):selenium是一
- 一学就会的深度学习基础指令及操作步骤(6)迁移学习
小圆圆666
深度学习迁移学习人工智能卷积神经网络
文章目录迁移学习模型准备数据增强模型训练模型微调和预测检查预测结果迁移学习迁移学习是将一个任务中学到的知识应用到另一个相关任务上,以提高新任务的学习效率和性能。优势:节省训练时间,提高模型性能,尤其在小数据场景下效果显著。核心是利用源域的知识来帮助目标域任务,比如在ImageNet上预训练的模型用于医疗影像分类。源域(SourceDomain):已有知识的领域(如ImageNet图像库)。目标域(
- 通义万相2.1:AI视频生成迎来“质变”,运镜、文字、物理规律全面突破
that's boy
人工智能通义万象2.1chatgptopenaiqwenAI作画AI编程
AI视频生成,从“能看”到“惊艳”的跨越在人工智能的浪潮中,AI视频生成无疑是最受瞩目的领域之一。从最初的简单动画到如今的逼真模拟,AI视频生成技术正在快速发展,不断刷新人们的认知。近日,阿里云旗下通义万相视频生成模型宣布了2.1版本的重磅升级,不仅在性能上实现了全面提升,更在运镜、文字生成、物理规律模拟等方面取得了突破性进展,让AI视频生成真正进入了“质变”的新阶段。通义万相2.1的出现,不仅是
- C++开源库大全
大王算法
C/C++开发实战365C++入门及项目实战宝典c++开源
程序员要站在巨人的肩膀上,C++拥有丰富的开源库,这里包括:标准库、Web应用框架、人工智能、数据库、图片处理、机器学习、日志、代码分析等。标准库C++StandardLibrary:是一系列类和函数的集合,使用核心语言编写,也是C++ISO自身标准的一部分。
- 基于PyTorch的深度学习6——数据处理工具箱2
Wis4e
深度学习pytorch人工智能
torchvision有4个功能模块:model、datasets、transforms和utils。主要介绍如何使用datasets的ImageFolder处理自定义数据集,以及如何使用transforms对源数据进行预处理、增强等。下面将重点介绍transforms及ImageFolder。transforms提供了对PILImage对象和Tensor对象的常用操作。1)对PILImage的常
- 基于PyTorch的深度学习——机器学习3
Wis4e
深度学习机器学习pytorch
激活函数在神经网络中作用有很多,主要作用是给神经网络提供非线性建模能力。如果没有激活函数,那么再多层的神经网络也只能处理线性可分问题。在搭建神经网络时,如何选择激活函数?如果搭建的神经网络层数不多,选择sigmoid、tanh、relu、softmax都可以;而如果搭建的网络层次较多,那就需要小心,选择不当就可导致梯度消失问题。此时一般不宜选择sigmoid、tanh激活函数,因它们的导数都小于1
- LangChain大模型应用开发指南-大模型Memory不止于对话
喝不喝奶茶丫
langchain人工智能大模型大模型应用AI大模型Memory大语言模型
上节课,我我为您介绍了LangChain中最基本的链式结构,以及基于这个链式结构演化出来的ReAct对话链模型。今天我将由简入繁,为大家拆解LangChain内置的多种记忆机制。本教程将详细介绍这些记忆组件的工作原理、特性以及使用方法。【一一AGI大模型学习所有资源获取处一一】①人工智能/大模型学习路线②AI产品经理资源合集③200本大模型PDF书籍④超详细海量大模型实战项目⑤LLM大模型系统学习
- llama.cpp框架下GGUF格式及量化参数全解析
Black_Rock_br
人工智能
前言:在人工智能领域,语言模型的高效部署和推理一直是研究热点。随着模型规模的不断扩大,如何在有限的硬件资源上实现快速、高效的推理,成为了一个关键问题。`llama.cpp`框架以其出色的性能和灵活性,为这一问题提供了有效的解决方案。其中,GGUF格式和模型量化参数是实现高效推理的重要技术手段。本文将对`llama.cpp`框架下的GGUF格式及量化参数进行详细解析,帮助读者更好地理解和应用这些技术
- 深度学习与普通神经网络有何区别?
是理不是里
深度学习神经网络人工智能
深度学习与普通神经网络的主要区别体现在以下几个方面:一、结构复杂度普通神经网络:通常指浅层结构,层数较少,一般为2-3层,包括输入层、一个或多个隐藏层、输出层。深度学习:强调通过5层以上的深度架构逐级抽象数据特征,包含多层神经网络,层数可能达到几十层甚至上百层。例如,ResNet(2015)包含152个卷积层。二、特征学习方式普通神经网络:特征提取通常依赖人工设计,需要领域专家的经验。这意味着在处
- AI 技术 引入 RTK(实时动态定位)系统,可以实现智能化管理和自动化运行
小赖同学啊
人工智能低空经济人工智能自动化运维
将AI技术引入RTK(实时动态定位)系统,可以实现智能化管理和自动化运行,从而提高系统的精度、效率和可靠性。以下是AI技术在RTK系统中的应用实例:一、AI技术在RTK系统中的应用场景1.整周模糊度快速解算问题:RTK的核心是解算载波相位的整周模糊度,传统方法耗时较长。AI解决方案:使用深度学习模型(如卷积神经网络CNN)预测整周模糊度。通过历史数据训练模型,实现快速解算。实例:某无人机公司使用A
- AI 驱动的软件测试革命:从自动化到智能化的进阶之路
綦枫Maple
AI+软件测试人工智能自动化运维
引言:软件测试的智能化转型浪潮在数字化转型加速的今天,软件产品的迭代速度与复杂度呈指数级增长。传统软件测试依赖人工编写用例、执行测试的模式,已难以应对快速交付与高质量要求的双重挑战。人工智能技术的突破为测试领域注入了新动能,通过机器学习、深度学习、自然语言处理等技术,测试流程正从“被动验证”向“主动预防”演进。本文将深入探讨AI与软件测试的融合路径,结合技术原理、工具实践与行业趋势,为读者呈现一幅
- 【Android】setText调用导致的悬浮窗抖动问题
aaajj
Androidandroid
在Android13中,有这么一个bug,写一个可以拖到的悬浮窗,这个悬浮窗里有TextView,在拖到某个位置后,再调用TextView的setText方法,会发现出现了一个窗口动画,悬浮窗跳到了起始位置,从开始的位置又滑动到当前位置,看起来就是出现了一个跳动。试验例子packagecom.example.testfloatview;importandroid.app.Service;impor
- log4j对象改变日志级别
3213213333332132
javalog4jlevellog4j对象名称日志级别
log4j对象改变日志级别可批量的改变所有级别,或是根据条件改变日志级别。
log4j配置文件:
log4j.rootLogger=ERROR,FILE,CONSOLE,EXECPTION
#log4j.appender.FILE=org.apache.log4j.RollingFileAppender
log4j.appender.FILE=org.apache.l
- elk+redis 搭建nginx日志分析平台
ronin47
elasticsearchkibanalogstash
elk+redis 搭建nginx日志分析平台
logstash,elasticsearch,kibana 怎么进行nginx的日志分析呢?首先,架构方面,nginx是有日志文件的,它的每个请求的状态等都有日志文件进行记录。其次,需要有个队 列,redis的l
- Yii2设置时区
dcj3sjt126com
PHPtimezoneyii2
时区这东西,在开发的时候,你说重要吧,也还好,毕竟没它也能正常运行,你说不重要吧,那就纠结了。特别是linux系统,都TMD差上几小时,你能不痛苦吗?win还好一点。有一些常规方法,是大家目前都在采用的1、php.ini中的设置,这个就不谈了,2、程序中公用文件里设置,date_default_timezone_set一下时区3、或者。。。自己写时间处理函数,在遇到时间的时候,用这个函数处理(比较
- js实现前台动态添加文本框,后台获取文本框内容
171815164
文本框
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://w
- 持续集成工具
g21121
持续集成
持续集成是什么?我们为什么需要持续集成?持续集成带来的好处是什么?什么样的项目需要持续集成?... 持续集成(Continuous integration ,简称CI),所谓集成可以理解为将互相依赖的工程或模块合并成一个能单独运行
- 数据结构哈希表(hash)总结
永夜-极光
数据结构
1.什么是hash
来源于百度百科:
Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入,通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。
- 乱七八糟
程序员是怎么炼成的
eclipse中的jvm字节码查看插件地址:
http://andrei.gmxhome.de/eclipse/
安装该地址的outline 插件 后重启,打开window下的view下的bytecode视图
http://andrei.gmxhome.de/eclipse/
jvm博客:
http://yunshen0909.iteye.com/blog/2
- 职场人伤害了“上司” 怎样弥补
aijuans
职场
由于工作中的失误,或者平时不注意自己的言行“伤害”、“得罪”了自己的上司,怎么办呢?
在职业生涯中这种问题尽量不要发生。下面提供了一些解决问题的建议:
一、利用一些轻松的场合表示对他的尊重
即使是开明的上司也很注重自己的权威,都希望得到下属的尊重,所以当你与上司冲突后,最好让不愉快成为过去,你不妨在一些轻松的场合,比如会餐、联谊活动等,向上司问个好,敬下酒,表示你对对方的尊重,
- 深入浅出url编码
antonyup_2006
应用服务器浏览器servletweblogicIE
出处:http://blog.csdn.net/yzhz 杨争
http://blog.csdn.net/yzhz/archive/2007/07/03/1676796.aspx
一、问题:
编码问题是JAVA初学者在web开发过程中经常会遇到问题,网上也有大量相关的
- 建表后创建表的约束关系和增加表的字段
百合不是茶
标的约束关系增加表的字段
下面所有的操作都是在表建立后操作的,主要目的就是熟悉sql的约束,约束语句的万能公式
1,增加字段(student表中增加 姓名字段)
alter table 增加字段的表名 add 增加的字段名 增加字段的数据类型
alter table student add name varchar2(10);
&nb
- Uploadify 3.2 参数属性、事件、方法函数详解
bijian1013
JavaScriptuploadify
一.属性
属性名称
默认值
说明
auto
true
设置为true当选择文件后就直接上传了,为false需要点击上传按钮才上传。
buttonClass
”
按钮样式
buttonCursor
‘hand’
鼠标指针悬停在按钮上的样子
buttonImage
null
浏览按钮的图片的路
- 精通Oracle10编程SQL(16)使用LOB对象
bijian1013
oracle数据库plsql
/*
*使用LOB对象
*/
--LOB(Large Object)是专门用于处理大对象的一种数据类型,其所存放的数据长度可以达到4G字节
--CLOB/NCLOB用于存储大批量字符数据,BLOB用于存储大批量二进制数据,而BFILE则存储着指向OS文件的指针
/*
*综合实例
*/
--建立表空间
--#指定区尺寸为128k,如不指定,区尺寸默认为64k
CR
- 【Resin一】Resin服务器部署web应用
bit1129
resin
工作中,在Resin服务器上部署web应用,通常有如下三种方式:
配置多个web-app
配置多个http id
为每个应用配置一个propeties、xml以及sh脚本文件
配置多个web-app
在resin.xml中,可以为一个host配置多个web-app
<cluster id="app&q
- red5简介及基础知识
白糖_
基础
简介
Red5的主要功能和Macromedia公司的FMS类似,提供基于Flash的流媒体服务的一款基于Java的开源流媒体服务器。它由Java语言编写,使用RTMP作为流媒体传输协议,这与FMS完全兼容。它具有流化FLV、MP3文件,实时录制客户端流为FLV文件,共享对象,实时视频播放、Remoting等功能。用Red5替换FMS后,客户端不用更改可正
- angular.fromJson
boyitech
AngularJSAngularJS 官方APIAngularJS API
angular.fromJson 描述: 把Json字符串转为对象 使用方法: angular.fromJson(json); 参数详解: Param Type Details json
string
JSON 字符串 返回值: 对象, 数组, 字符串 或者是一个数字 示例:
<!DOCTYPE HTML>
<h
- java-颠倒一个句子中的词的顺序。比如: I am a student颠倒后变成:student a am I
bylijinnan
java
public class ReverseWords {
/**
* 题目:颠倒一个句子中的词的顺序。比如: I am a student颠倒后变成:student a am I.词以空格分隔。
* 要求:
* 1.实现速度最快,移动最少
* 2.不能使用String的方法如split,indexOf等等。
* 解答:两次翻转。
*/
publ
- web实时通讯
Chen.H
Web浏览器socket脚本
关于web实时通讯,做一些监控软件。
由web服务器组件从消息服务器订阅实时数据,并建立消息服务器到所述web服务器之间的连接,web浏览器利用从所述web服务器下载到web页面的客户端代理与web服务器组件之间的socket连接,建立web浏览器与web服务器之间的持久连接;利用所述客户端代理与web浏览器页面之间的信息交互实现页面本地更新,建立一条从消息服务器到web浏览器页面之间的消息通路
- [基因与生物]远古生物的基因可以嫁接到现代生物基因组中吗?
comsci
生物
大家仅仅把我说的事情当作一个IT行业的笑话来听吧..没有其它更多的意思
如果我们把大自然看成是一位伟大的程序员,专门为地球上的生态系统编制基因代码,并创造出各种不同的生物来,那么6500万年前的程序员开发的代码,是否兼容现代派的程序员的代码和架构呢?
- oracle 外部表
daizj
oracle外部表external tables
oracle外部表是只允许只读访问,不能进行DML操作,不能创建索引,可以对外部表进行的查询,连接,排序,创建视图和创建同义词操作。
you can select, join, or sort external table data. You can also create views and synonyms for external tables. Ho
- aop相关的概念及配置
daysinsun
AOP
切面(Aspect):
通常在目标方法执行前后需要执行的方法(如事务、日志、权限),这些方法我们封装到一个类里面,这个类就叫切面。
连接点(joinpoint)
spring里面的连接点指需要切入的方法,通常这个joinpoint可以作为一个参数传入到切面的方法里面(非常有用的一个东西)。
通知(Advice)
通知就是切面里面方法的具体实现,分为前置、后置、最终、异常环
- 初一上学期难记忆单词背诵第二课
dcj3sjt126com
englishword
middle 中间的,中级的
well 喔,那么;好吧
phone 电话,电话机
policeman 警察
ask 问
take 拿到;带到
address 地址
glad 高兴的,乐意的
why 为什么
China 中国
family 家庭
grandmother (外)祖母
grandfather (外)祖父
wife 妻子
husband 丈夫
da
- Linux日志分析常用命令
dcj3sjt126com
linuxlog
1.查看文件内容
cat
-n 显示行号 2.分页显示
more
Enter 显示下一行
空格 显示下一页
F 显示下一屏
B 显示上一屏
less
/get 查询"get"字符串并高亮显示 3.显示文件尾
tail
-f 不退出持续显示
-n 显示文件最后n行 4.显示头文件
head
-n 显示文件开始n行 5.内容排序
sort
-n 按照
- JSONP 原理分析
fantasy2005
JavaScriptjsonpjsonp 跨域
转自 http://www.nowamagic.net/librarys/veda/detail/224
JavaScript是一种在Web开发中经常使用的前端动态脚本技术。在JavaScript中,有一个很重要的安全性限制,被称为“Same-Origin Policy”(同源策略)。这一策略对于JavaScript代码能够访问的页面内容做了很重要的限制,即JavaScript只能访问与包含它的
- 使用connect by进行级联查询
234390216
oracle查询父子Connect by级联
使用connect by进行级联查询
connect by可以用于级联查询,常用于对具有树状结构的记录查询某一节点的所有子孙节点或所有祖辈节点。
来看一个示例,现假设我们拥有一个菜单表t_menu,其中只有三个字段:
- 一个不错的能将HTML表格导出为excel,pdf等的jquery插件
jackyrong
jquery插件
发现一个老外写的不错的jquery插件,可以实现将HTML
表格导出为excel,pdf等格式,
地址在:
https://github.com/kayalshri/
下面看个例子,实现导出表格到excel,pdf
<html>
<head>
<title>Export html table to excel an
- UI设计中我们为什么需要设计动效
lampcy
UIUI设计
关于Unity3D中的Shader的知识
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,
- 如何禁止页面缓存
nannan408
htmljspcache
禁止页面使用缓存~
------------------------------------------------
jsp:页面no cache:
response.setHeader("Pragma","No-cache");
response.setHeader("Cache-Control","no-cach
- 以代码的方式管理quartz定时任务的暂停、重启、删除、添加等
Everyday都不同
定时任务管理spring-quartz
【前言】在项目的管理功能中,对定时任务的管理有时会很常见。因为我们不能指望只在配置文件中配置好定时任务就行了,因为如果要控制定时任务的 “暂停” 呢?暂停之后又要在某个时间点 “重启” 该定时任务呢?或者说直接 “删除” 该定时任务呢?要改变某定时任务的触发时间呢? “添加” 一个定时任务对于系统的使用者而言,是不太现实的,因为一个定时任务的处理逻辑他是不
- EXT实例
tntxia
ext
(1) 增加一个按钮
JSP:
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<%
String path = request.getContextPath();
Stri
- 数学学习在计算机研究领域的作用和重要性
xjnine
Math
最近一直有师弟师妹和朋友问我数学和研究的关系,研一要去学什么数学课。毕竟在清华,衡量一个研究生最重要的指标之一就是paper,而没有数学,是肯定上不了世界顶级的期刊和会议的,这在计算机学界尤其重要!你会发现,不论哪个领域有价值的东西,都一定离不开数学!在这样一个信息时代,当google已经让世界没有秘密的时候,一种卓越的数学思维,绝对可以成为你的核心竞争力. 无奈本人实在见地