Python实现NMS,DIOU_NMS
NMS
import numpy as np
def NMS(dects, threshhold):
x1 = dects[:, 0]
y1 = dects[:, 1]
x2 = dects[:, 2]
y2 = dects[:, 3]
scores = dects[:, 4]
areas = (x2 - x1) * (y2 - y1)
index = scores.argsort()[::-1]
keep = []
while index.size > 0:
i = index[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[index[1:]])
yy1 = np.maximum(y1[i], y1[index[1:]])
xx2 = np.minimum(x2[i], x2[index[1:]])
yy2 = np.minimum(y2[i], y2[index[1:]])
w = np.maximum(0.0, xx2 - xx1)
h = np.maximum(0.0, yy2 - yy1)
inter = w * h
ious = inter/(areas[i] + areas[index[1:]] - inter)
ins = np.where(ious <= threshhold)[0]
index = index[ins + 1]
print(boxes[keep])
if __name__ == "__main__":
threshhold = 0.7
boxes = np.array([[100, 100, 210, 210, 0.71],
[250, 250, 420, 420, 0.8],
[220, 220, 320, 330, 0.92],
[100, 100, 210, 210, 0.72],
[230, 240, 325, 330, 0.81],
[220, 230, 315, 340, 0.9]])
NMS(boxes, threshhold)
DIOU_NMS
import numpy as np
def DIoU_NMS(dects, threshhold):
x1 = dects[:, 0]
y1 = dects[:, 1]
x2 = dects[:, 2]
y2 = dects[:, 3]
scores = dects[:, 4]
areas = (x2 - x1) * (y2 - y1)
index = scores.argsort()[::-1]
keep = []
while index.size > 0:
i = index[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[index[1:]])
yy1 = np.maximum(y1[i], y1[index[1:]])
xx2 = np.minimum(x2[i], x2[index[1:]])
yy2 = np.minimum(y2[i], y2[index[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
center_x1 = (x1[i]+x2[i])/2
center_y1 = (y1[i]+y2[i])/2
center_x2 = (x1[index[1:]]+x2[index[1:]])/2
center_y2 = (y1[index[1:]]+y2[index[1:]])/2
center_distance = (center_x1 - center_x2)**2 + (center_y1 - center_y2)**2
c_xx1 = np.minimum(x1[i], x1[index[1:]])
c_yy1 = np.minimum(y1[i], y1[index[1:]])
c_xx2 = np.maximum(x2[i], x2[index[1:]])
c_yy2 = np.maximum(y2[i], y2[index[1:]])
c_w = np.maximum(0.0, c_xx2 - c_xx1)
c_h = np.maximum(0.0, c_yy2 - c_yy1)
c_distance = c_w**2 + c_h**2
ious = inter/(areas[i] + areas[index[1:]] - inter) - center_distance/c_distance
ins = np.where(ious <= threshhold)[0]
index = index[ins + 1]
print(boxes[keep])
if __name__ == "__main__":
threshhold = 0.7
boxes = np.array([[100, 100, 210, 210, 0.71],
[250, 250, 420, 420, 0.8],
[220, 220, 320, 330, 0.92],
[100, 100, 210, 210, 0.72],
[230, 240, 325, 330, 0.81],
[220, 230, 315, 340, 0.9]])
DIoU_NMS(boxes, threshhold)