import os
import json
from tqdm import tqdm
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--json_path', default='./annotations/instances_train2017.json',type=str, help="input: coco format(json)")
parser.add_argument('--save_path', default='./labels/train', type=str, help="specify where to save the output dir of labels")
arg = parser.parse_args()
def convert(size, box):
dw = 1. / (size[0])
dh = 1. / (size[1])
x = box[0] + box[2] / 2.0
y = box[1] + box[3] / 2.0
w = box[2]
h = box[3]
x = round(x * dw, 6)
w = round(w * dw, 6)
y = round(y * dh, 6)
h = round(h * dh, 6)
return (x, y, w, h)
if __name__ == '__main__':
json_file =arg.json_path
ana_txt_save_path = arg.save_path
global count
count=0
data = json.load(open(json_file, 'r'))
if not os.path.exists(ana_txt_save_path):
os.makedirs(ana_txt_save_path)
id_map = {}
with open('classes.txt', 'w') as f:
for i, category in enumerate(data['categories']):
f.write(f"{category['name']}\n")
id_map[category['id']] = i
list_file = open('train2017.txt', 'w')
images=tqdm(data['images'])
for img in images:
filename = img["file_name"]
img_width = img["width"]
img_height = img["height"]
img_id = img["id"]
head, tail = os.path.splitext(filename)
ana_txt_name = head + ".txt"
txt_path = os.path.join(ana_txt_save_path, ana_txt_name)
f_txt = open(txt_path, 'w')
tmp = []
for i, ann in enumerate(data['annotations']):
if ann['image_id'] == img_id:
tmp.append(i)
box = convert((img_width, img_height), ann["bbox"])
f_txt.write("%s %s %s %s %s\n" % (id_map[ann["category_id"]], box[0], box[1], box[2], box[3]))
f_txt.close()
for i in tmp:
del data['annotations'][i]
count += 1
list_file.write('./images/train2017/%s.jpg\n' % (head))
print('annotations'+str(len(data['annotations'])))
list_file.close()