df.to html函数,pd.DataFrame 数据的保存和读取((df.to_csv、df.to_json、df.to_html、df.to_excel))...

DataFrame 数据的保存和读取

df.to_csv 写入到 csv 文件

pd.read_csv 读取 csv 文件

df.to_json 写入到 json 文件

pd.read_json 读取 json 文件

df.to_html 写入到 html 文件

pd.read_html 读取 html 文件

df.to_excel 写入到 excel 文件

pd.read_excel 读取 excel 文件

pandas.DataFrame.to_csv

将 DataFrame 写入到 csv 文件

DataFrame.to_csv(path_or_buf=None, sep=', ', na_rep='', float_format=None, columns=None, header=True, index=True,

index_label=None, mode='w', encoding=None, compression=None, quoting=None, quotechar='"',

line_terminator='\n', chunksize=None, tupleize_cols=None, date_format=None, doublequote=True,

escapechar=None, decimal='.')

参数:

path_or_buf : 文件路径,如果没有指定则将会直接返回字符串的 json

sep : 输出文件的字段分隔符,默认为 “,”

na_rep : 用于替换空数据的字符串,默认为''

float_format : 设置浮点数的格式(几位小数点)

columns : 要写的列

header : 是否保存列名,默认为 True ,保存

index : 是否保存索引,默认为 True ,保存

index_label : 索引的列标签名

.

# -*- coding:utf-8 -*-

import numpy as np

import pandas as pd

list_l = [[11, 12, 13, 14, 15], [21, 22, 23, 24, 25], [31, 32, 33, 34, 35]]

date_range = pd.date_range(start="20180701", periods=3)

df = pd.DataFrame(list_l, index=date_range,

columns=['a', 'b', 'c', 'd', 'e'])

print(df)

"""

a b c d e

2018-07-01 11 12 13 14 15

2018-07-02 21 22 23 24 25

2018-07-03 31 32 33 34 35

"""

df.to_csv("tzzs_data.csv")

"""

csv 文件内容:

,a,b,c,d,e

2018-07-01,11,12,13,14,15

2018-07-02,21,22,23,24,25

2018-07-03,31,32,33,34,35

"""

read_csv = pd.read_csv("tzzs_data.csv")

print(read_csv)

"""

Unnamed: 0 a b c d e

0 2018-07-01 11 12 13 14 15

1 2018-07-02 21 22 23 24 25

2 2018-07-03 31 32 33 34 35

"""

df.to_csv("tzzs_data2.csv", index_label="index_label")

"""

csv 文件内容:

index_label,a,b,c,d,e

2018-07-01,11,12,13,14,15

2018-07-02,21,22,23,24,25

2018-07-03,31,32,33,34,35

"""

read_csv2 = pd.read_csv("tzzs_data2.csv")

print(read_csv2)

"""

index_label a b c d e

0 2018-07-01 11 12 13 14 15

1 2018-07-02 21 22 23 24 25

2 2018-07-03 31 32 33 34 35

"""

1.首先查询当前的工作路径:

import os

os.getcwd() #获取当前工作路径

2.to_csv()是DataFrame类的方法,read_csv()是pandas的方法

dt.to_csv() #默认dt是DataFrame的一个实例,参数解释如下

路径 path_or_buf: A string path to the file to write or a StringIO

dt.to_csv('Result.csv') #相对位置,保存在getwcd()获得的路径下

dt.to_csv('C:/Users/think/Desktop/Result.csv') #绝对位置

分隔符 sep : Field delimiter for the output file (default ”,”)

dt.to_csv('C:/Users/think/Desktop/Result.csv',sep='?')#使用?分隔需要保存的数据,如果不写,默认是,

替换空值na_rep: A string representation of a missing value (default ‘’)

dt.to_csv('C:/Users/think/Desktop/Result1.csv',na_rep='NA') #确实值保存为NA,如果不写,默认是空

格式 float_format: Format string for floating point numbers

dt.to_csv('C:/Users/think/Desktop/Result1.csv',float_format='%.2f') #保留两位小数

是否保留某列数据 cols: Columns to write (default None)

dt.to_csv('C:/Users/think/Desktop/Result.csv',columns=['name']) #保存索引列和name列

是否保留列名 header: Whether to write out the column names (default True)

dt.to_csv('C:/Users/think/Desktop/Result.csv',header=0) #不保存列名

是否保留行索引index:  whether to write row (index) names (default True)

dt.to_csv('C:/Users/think/Desktop/Result1.csv',index=0) #不保存行索引

pandas.DataFrame.to_json

将 Dataframe 写入到 json 文件

DataFrame.to_json(path_or_buf=None, orient=None, date_format=None, double_precision=10, force_ascii=True,

date_unit='ms', default_handler=None, lines=False, compression=None, index=True)

参数:

path_or_buf : 文件路径,如果没有指定则将会直接返回字符串的 json。

代码:

df.to_json("tzzs_data.json")

read_json = pd.read_json("tzzs_data.json")

print(read_json)

"""

a b c d e

2018-07-01 11 12 13 14 15

2018-07-02 21 22 23 24 25

2018-07-03 31 32 33 34 35

"""

json:

{

"a": {

"1530403200000": 11,

"1530489600000": 21,

"1530576000000": 31

},

"b": {

"1530403200000": 12,

"1530489600000": 22,

"1530576000000": 32

},

"c": {

"1530403200000": 13,

"1530489600000": 23,

"1530576000000": 33

},

"d": {

"1530403200000": 14,

"1530489600000": 24,

"1530576000000": 34

},

"e": {

"1530403200000": 15,

"1530489600000": 25,

"1530576000000": 35

}

}

pandas.DataFrame.to_html

将 Dataframe 写入到 html 文件

DataFrame.to_html(buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None,

float_format=None, sparsify=None, index_names=True, justify=None, bold_rows=True, classes=None,

escape=True, max_rows=None, max_cols=None, show_dimensions=False, notebook=False, decimal='.',

border=None, table_id=None)

df.to_html("tzzs_data.html")

read_html = pd.read_html("tzzs_data.html")

print(read_html)

"""

[ Unnamed: 0 a b c d e

0 2018-07-01 11 12 13 14 15

1 2018-07-02 21 22 23 24 25

2 2018-07-03 31 32 33 34 35]

"""

#

print(read_html[0])

"""

Unnamed: 0 a b c d e

0 2018-07-01 11 12 13 14 15

1 2018-07-02 21 22 23 24 25

2 2018-07-03 31 32 33 34 35

"""

HTML:

abcde

2018-07-0111121314152018-07-0221222324252018-07-033132333435

在浏览器中打开:

df.to html函数,pd.DataFrame 数据的保存和读取((df.to_csv、df.to_json、df.to_html、df.to_excel))..._第1张图片

df.to_html 生成的是一个 html 格式的 table 表,我们可以在前后加入其他标签,丰富页面。ps:如果有中文字符,需要在 head 中设置编码格式。

# -*- coding: utf-8 -*-

"""

@author: tz_zs

"""

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

index = ["2018-07-01", "2018-07-02", "2018-07-03", "2018-07-04"]

df = pd.DataFrame(index=index)

df["一"] = [11, 12, 13, 14]

df["二"] = [21, 22, 23, 24]

print(df)

"""

一 二

2018-07-01 11 21

2018-07-02 12 22

2018-07-03 13 23

2018-07-04 14 24

"""

axes_subplot = df.plot()

# print(type(axes_subplot)) #

plt.xlabel("time")

plt.ylabel("num")

plt.legend(loc="best")

plt.grid(True)

plt.savefig("test.png")

HEADER = '''

'''

FOOTER = '''

''' % ("test.png")

with open("test.html", 'w') as f:

f.write(HEADER)

f.write(df.to_html(classes='df'))

f.write(FOOTER)

.

df.to html函数,pd.DataFrame 数据的保存和读取((df.to_csv、df.to_json、df.to_html、df.to_excel))..._第2张图片

.

pandas.DataFrame.to_excel

将 DataFrame 写入 excel 文件

DataFrame.to_excel(excel_writer, sheet_name='Sheet1', na_rep='', float_format=None, columns=None,

header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None,

merge_cells=True, encoding=None, inf_rep='inf', verbose=True, freeze_panes=None)

#!/usr/bin/python2.7

# -*- coding:utf-8 -*-

"""

@author: tz_zs

"""

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

list_l = [[1, 3, 3, 5, 4], [11, 7, 15, 13, 9], [4, 2, 7, 9, 3], [15, 11, 12, 6, 11]]

index = ["2018-07-01", "2018-07-02", "2018-07-03", "2018-07-04"]

df = pd.DataFrame(list_l, index=index, columns=['a', 'b', 'c', 'd', 'e'])

print(df)

"""

a b c d e

2018-07-01 1 3 3 5 4

2018-07-02 11 7 15 13 9

2018-07-03 4 2 7 9 3

2018-07-04 15 11 12 6 11

"""

df.to_excel("test.xls")

df.to html函数,pd.DataFrame 数据的保存和读取((df.to_csv、df.to_json、df.to_html、df.to_excel))..._第3张图片

pandas.read_excel

读取 excel

可能遇到的报错:ImportError: Missing optional dependency 'xlrd'. Install xlrd >= 1.0.0 for Excel support Use pip or conda to install xlrd.

解决方法:安装 xlrd 包。

其他文章:

你可能感兴趣的:(df.to,html函数)