机器学习sklearn-随机森林

集成算法概述

集成学习(ensemble learning)是时下非常流行的机器学习算法,它本身不是一个单独的机器学习算法,而是通
过在数据上构建多个模型,集成所有模型的建模结果。基本上所有的机器学习领域都可以看到集成学习的身影,在
现实中集成学习也有相当大的作用,它可以用来做市场营销模拟的建模,统计客户来源,保留和流失,也可用来预
测疾病的风险和病患者的易感性。在现在的各种算法竞赛中,随机森林,梯度提升树(GBDT),Xgboost等集成
算法的身影也随处可见,可见其效果之好,应用之广。

集成算法的目标

集成算法会考虑多个评估器的建模结果,汇总之后得到一个综合的结果,以此来获取比单个模型更好的回归或
分类表现

多个模型集成成为的模型叫做集成评估器(ensemble estimator),组成集成评估器的每个模型都叫做基评估器(base estimator)。通常来说,有三类集成算法:装袋法(Bagging),提升法(Boosting)和stacking。

装袋法的核心思想是构建多个相互独立的评估器,然后对其预测进行平均或多数表决原则来决定集成评估器的结果。装袋法的代表模型就是随机森林。

提升法中,基评估器是相关的,是按顺序一一构建的。其核心思想是结合弱评估器的力量一次次对难以评估的样本进行预测,从而构成一个强评估器。提升法的代表模型有Adaboost和梯度提升树。

sklearn中的集成算法

sklearn中的集成算法模块ensemble

机器学习sklearn-随机森林_第1张图片

RandomForestClassifier随机森林分类器

随机森林是非常具有代表性的Bagging集成算法,它的所有基评估器都是决策树,分类树组成的森林就叫做随机森林分类器,回归树所集成的森林就叫做随机森林回归器。

一、重要参数

1.控制基评估器的参数

机器学习sklearn-随机森林_第2张图片

2.n_estimators

这是森林中树木的数量,即基评估器的数量。这个参数对随机森林模型的精确性影响是单调的,n_estimators越大,模型的效果往往越好。但是相应的,任何模型都有决策边界,n_estimators达到一定的程度之后,随机森林的精确性往往不在上升或开始波动,并且,n_estimators越大,需要的计算量和内存也越大,训练的时间也会越来越长。对于这个参数,我们是渴望在训练难度和模型效果之间取得平衡。

n_estimators的默认值在现有版本的sklearn中是10,但是在0.22版本中,这个默认值被修正为100。这个修正显示出了使用者的调参倾向:要更大的n_estimators。

一个随机森林和单个决策树效益的对比:

%matplotlib inline
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_wine

wine = load_wine()
wine.data
wine.target

from sklearn.model_selection import train_test_split
Xtrain, Xtest, Ytrain, Ytest = train_test_split(wine.data,wine.target,test_size=0.3)
clf = DecisionTreeClassifier(random_state=0)
rfc = RandomForestClassifier(random_state=0)
clf = clf.fit(Xtrain,Ytrain)
rfc = rfc.fit(Xtrain,Ytrain)
score_c = clf.score(Xtest,Ytest)
score_r = rfc.score(Xtest,Ytest)
print("Single Tree:{}".format(score_c)
,"Random Forest:{}".format(score_r)
)

#交叉验证:
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt

rfc = RandomForestClassifier(n_estimators=25)
rfc_s = cross_val_score(rfc,wine.data,wine.target,cv=10)

clf = DecisionTreeClassifier()
clf_s = cross_val_score(clf,wine.data,wine.target,cv=10)

plt.plot(range(1,11),rfc_s,label="RandomForest")
plt.plot(range(1,11),clf_s,label = "Decision Tree")
plt.legend()
plt.show()

机器学习sklearn-随机森林_第3张图片

rfc_l = []
clf_l = []
 
for i in range(10):
    rfc = RandomForestClassifier(n_estimators=25)
    rfc_s = cross_val_score(rfc,wine.data,wine.target,cv=10).mean()
    rfc_l.append(rfc_s)
    clf = DecisionTreeClassifier()
    clf_s = cross_val_score(clf,wine.data,wine.target,cv=10).mean()
    clf_l.append(clf_s)
    
plt.plot(range(1,11),rfc_l,label = "Random Forest")
plt.plot(range(1,11),clf_l,label = "Decision Tree")
plt.legend()
plt.show()

机器学习sklearn-随机森林_第4张图片

superpa = []
for i in range(200):
    rfc = RandomForestClassifier(n_estimators=i+1,n_jobs=-1)
    rfc_s = cross_val_score(rfc,wine.data,wine.target,cv=10).mean()
    superpa.append(rfc_s)
print(max(superpa),superpa.index(max(superpa)))
plt.figure(figsize=[20,5])
plt.plot(range(1,201),superpa)
plt.show()

#list.index(object) 对象object在列表list中的索引

机器学习sklearn-随机森林_第5张图片

3.random_state

随机森林中其实也有random_state,用法和分类树中相似,只不过在分类树中,一个random_state只控制生成一棵树,而随机森林中的random_state控制的是生成森林的模式,而非让一个森林中只有一棵树。

当random_state固定时,随机森林中生成是一组固定的树,但每棵树依然是不一致的,这是用”随机挑选特征进行分枝“的方法得到的随机性。并且我们可以证明,当这种随机性越大的时候,袋装法的效果一般会越来越好。用袋装法集成时,基分类器应当是相互独立的,是不相同的。

但这种做法的局限性是很强的,当我们需要成千上万棵树的时候,数据不一定能够提供成千上万的特征来让我们构筑尽量多尽量不同的树。因此,除了random_state。我们还需要其他的随机性。

4.bootstrap & oob_score

要让基分类器尽量都不一样,一种很容易理解的方法是使用不同的训练集来进行训练,而袋装法正是通过有放回的随机抽样技术来形成不同的训练数据,bootstrap就是用来控制抽样技术的参数。

在一个含有n个样本的原始训练集中,我们进行随机采样,每次采样一个样本,并在抽取下一个样本之前将该样本放回原始训练集,也就是说下次采样时这个样本依然可能被采集到,这样采集n次,最终得到一个和原始训练集一样大的,n个样本组成的自助集。由于是随机采样,这样每次的自助集和原始数据集不同,和其他的采样集也是不同的。这样我们就可以自由创造取之不尽用之不竭,并且互不相同的自助集,用这些自助集来训练我们的基分类器,我们的基分类器自然也就各不相同了。

bootstrap参数默认True,代表采用这种有放回的随机抽样技术。通常,这个参数不会被我们设置为False。

机器学习sklearn-随机森林_第6张图片

然而有放回抽样也会有自己的问题。由于是有放回,一些样本可能在同一个自助集中出现多次,而其他一些却可能
被忽略,一般来说,自助集大约平均会包含63%的原始数据。会有约37%的训练数据被浪费掉,没有参与建模,
这些数据被称为袋外数据(out of bag data,简写为oob)。除了我们最开始就划分好的测试集之外,这些数据也可
以被用来作为集成算法的测试集。也就是说,在使用随机森林时,我们可以不划分测试集和训练集,只需要用袋外
数据来测试我们的模型即可。当然,这也不是绝对的,当n和n_estimators都不够大的时候,很可能就没有数据掉
落在袋外,自然也就无法使用oob数据来测试模型了。

如果希望用袋外数据来测试,则需要在实例化时就将oob_score这个参数调整为True,训练完毕之后,我们可以用
随机森林的另一个重要属性:oob_score_来查看我们的在袋外数据上测试的结果。

#无需划分训练集和测试集
rfc = RandomForestClassifier(n_estimators=25,oob_score=True)
rfc = rfc.fit(wine.data,wine.target)
#重要属性oob_score_
rfc.oob_score_

二、重要属性和接口

.feature_importances

随机森林的接口与决策树完全一致,因此依然有四个常用接口:apply, fit, predict和score。除此之外,还需要注意随机森林的predict_proba接口,这个接口返回每个测试样本对应的被分到每一类标签的概率,标签有几个分类
就返回几个概率。如果是二分类问题,则predict_proba返回的数值大于0.5的,被分为1,小于0.5的,被分为0。
传统的随机森林是利用袋装法中的规则,平均或少数服从多数来决定集成的结果,而sklearn中的随机森林是平均
每个样本对应的predict_proba返回的概率,得到一个平均概率,从而决定测试样本的分类。

rfc = RandomForestClassifier(n_estimators=25)
rfc = rfc.fit(Xtrain, Ytrain)
rfc.score(Xtest,Ytest)
rfc.feature_importances_
rfc.apply(Xtest)
rfc.predict(Xtest)
rfc.predict_proba(Xtest)

Bonus:Bagging的另一个必要条件

在使用袋装法时要求基评估器要尽量独立。其实,袋装法还有另一个必要条件:基分类器的判断准
确率至少要超过随机分类器,即时说,基分类器的判断准确率至少要超过50%。

机器学习sklearn-随机森林_第7张图片

当基分类器的误差率小于0.5,即准确率大于0.5时,集成的效果是比基分类器要好的。相反,
当基分类器的误差率大于0.5,袋装的集成算法就失效了。所以在使用随机森林之前,一定要检查,用来组成随机
森林的分类树们是否都有至少50%的预测正确率。

RandomForestRegressor随机森林回归器

在回归树中,MSE不只是我们的分枝质量衡量指标,也是我们最常用的衡量回归树回归质量的指标

回归树的接口score返回的是R平方,并不是MSE

虽然均方误差永远为正,但是sklearn当中使用均方误差作为评判标准时,却是计算”负均方误
差“(neg_mean_squared_error)

实例:用随机森林回归填补缺失值

我们从现实中收集的数据,几乎不可能是完美无缺的,往往都会有一些缺失值。面对缺失值,很多人选择的方式是直接将含有缺失值的样本删除,这是一种有效的方法,但是有时候填补缺失值会比直接丢弃样本效果更好,即便我们其实并不知道缺失值的真实样貌。在sklearn中,我们可以使用sklearn.impute.SimpleImputer来轻松地将均
值,中值,或者其他最常用的数值填补到数据中,在这个案例中,我们将使用均值,0,和随机森林回归来填补缺失值,并验证四种状况下的拟合状况,找出对使用的数据集来说最佳的缺失值填补方法。

使用0和均值填补缺失值

#使用均值进行填补
from sklearn.impute import SimpleImputer
imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean')
X_missing_mean = imp_mean.fit_transform(X_missing)
#使用0进行填补
imp_0 = SimpleImputer(missing_values=np.nan, strategy="constant",fill_value=0)
X_missing_0 = imp_0.fit_transform(X_missing)

使用随机森林填补缺失值

对于一个有n个特征的数据来说,其中特征T有缺失值,我们就把特征T当作标签,其他的n-1个特征和原本的标签组成新
的特征矩阵。那对于T来说,它没有缺失的部分,就是我们的Y_test,这部分数据既有标签也有特征,而它缺失的部
分,只有特征没有标签,就是我们需要预测的部分。
特征T不缺失的值对应的其他n-1个特征 + 本来的标签:X_train
特征T不缺失的值:Y_train
特征T缺失的值对应的其他n-1个特征 + 本来的标签:X_test
特征T缺失的值:未知,我们需要预测的Y_test
这种做法,对于某一个特征大量缺失,其他特征却很完整的情况,非常适用。
那如果数据中除了特征T之外,其他特征也有缺失值怎么办?
答案是遍历所有的特征,从缺失最少的开始进行填补(因为填补缺失最少的特征所需要的准确信息最少)。
填补一个特征时,先将其他特征的缺失值用0代替,每完成一次回归预测,就将预测值放到原本的特征矩阵中,再继续填
补下一个特征。每一次填补完毕,有缺失值的特征会减少一个,所以每次循环后,需要用0来填补的特征就越来越少。当
进行到最后一个特征时(这个特征应该是所有特征中缺失值最多的),已经没有任何的其他特征需要用0来进行填补了,
而我们已经使用回归为其他特征填补了大量有效信息,可以用来填补缺失最多的特征。
遍历所有的特征后,数据就完整,不再有缺失值了。

X_missing_reg = X_missing.copy()

#找出数据集中,缺失值从小到大排列的特征们的顺序,并且有了这些的索引
sortindex = np.argsort(X_missing_reg.isnull().sum(axis=0)).values#np.argsort()返回的是从小到大排序的顺序所对应的索引
 
for i in sortindex:
    
    #构建我们的新特征矩阵(没有被选中去填充的特征 + 原始的标签)和新标签(被选中去填充的特征)
    df = X_missing_reg
    fillc = df.iloc[:,i]#新标签
    df = pd.concat([df.iloc[:,df.columns != i],pd.DataFrame(y_full)],axis=1)#新特征矩阵
    
    #在新特征矩阵中,对含有缺失值的列,进行0的填补
    df_0 =SimpleImputer(missing_values=np.nan,strategy='constant',fill_value=0).fit_transform(df)
                        
    #找出我们的训练集和测试集
    Ytrain = fillc[fillc.notnull()]# Ytrain是被选中要填充的特征中(现在是我们的标签),存在的那些值:非空值
    Ytest = fillc[fillc.isnull()]#Ytest 是被选中要填充的特征中(现在是我们的标签),不存在的那些值:空值。注意我们需要的不是Ytest的值,需要的是Ytest所带的索引
    Xtrain = df_0[Ytrain.index,:]#在新特征矩阵上,被选出来的要填充的特征的非空值所对应的记录
    Xtest = df_0[Ytest.index,:]#在新特征矩阵上,被选出来的要填充的特征的空值所对应的记录
    
    #用随机森林回归来填补缺失值
    rfc = RandomForestRegressor(n_estimators=100)#实例化
    rfc = rfc.fit(Xtrain, Ytrain)#导入训练集进行训练
    Ypredict = rfc.predict(Xtest)#用predict接口将Xtest导入,得到我们的预测结果(回归结果),就是我们要用来填补空值的这些值
    
    #将填补好的特征返回到我们的原始的特征矩阵中
    X_missing_reg.loc[X_missing_reg.iloc[:,i].isnull(),i] = Ypredict

#检验是否有空值
X_missing_reg.isnull().sum()

机器学习中调参的基本思想

泛化误差

当模型在未知数据(测试集或者袋外数据)上表现糟糕时,我们说模型的泛化程度不够,泛化误差大,模型的效果
不好。泛化误差受到模型的结构(复杂度)影响。看下面这张图,它准确地描绘了泛化误差与模型复杂度的关系,
当模型太复杂,模型就会过拟合,泛化能力就不够,所以泛化误差大。当模型太简单,模型就会欠拟合,拟合能力
就不够,所以误差也会大。只有当模型的复杂度刚刚好的才能够达到泛化误差最小的目标。

机器学习sklearn-随机森林_第8张图片

1)模型太复杂或者太简单,都会让泛化误差高,我们追求的是位于中间的平衡点

2)模型太复杂就会过拟合,模型太简单就会欠拟合

3)对树模型和树的集成模型来说,树的深度越深,枝叶越多,模型越复杂

4)树模型和树的集成模型的目标,都是减少模型复杂度,把模型往图像的左边移动

那具体每个参数,都如何影响我们的复杂度和模型呢?我们一直以来调参,都是在学习曲线上轮流找最优值,盼望
能够将准确率修正到一个比较高的水平。然而我们现在了解了随机森林的调参方向:降低复杂度,我们就可以将那
些对复杂度影响巨大的参数挑选出来,研究他们的单调性,然后专注调整那些能最大限度让复杂度降低的参数。对
于那些不单调的参数,或者反而会让复杂度升高的参数,我们就视情况使用,大多时候甚至可以退避。

机器学习sklearn-随机森林_第9张图片

实例:随机森林在乳腺癌数据上的调参

1.导入需要的库:

from sklearn.datasets import load_breast_cancer
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
  1. 导入数据集,探索数据:
data = load_breast_cancer()
data
data.data.shape
data.target
  1. 进行一次简单的建模,看看模型本身在数据集上的效果
rfc = RandomForestClassifier(n_estimators=100,random_state=90)
score_pre = cross_val_score(rfc,data.data,data.target,cv=10).mean()#交叉验证的分类默认scoring='accuracy'
 
score_pre

0.9648809523809524
  1. 随机森林调整的第一步:无论如何先来调n_estimators
"""
在这里我们选择学习曲线,可以使用网格搜索吗?可以,但是只有学习曲线,才能看见趋势
我个人的倾向是,要看见n_estimators在什么取值开始变得平稳,是否一直推动模型整体准确率的上升等信息
第一次的学习曲线,可以先用来帮助我们划定范围,我们取每十个数作为一个阶段,来观察n_estimators的变化如何
引起模型整体准确率的变化
"""
#####【TIME WARNING: 30 seconds】#####
scorel = []
for i in range(0,200,10):
rfc = RandomForestClassifier(n_estimators=i+1,
n_jobs=-1,
random_state=90)
score = cross_val_score(rfc,data.data,data.target,cv=10).mean()
scorel.append(score)
print(max(scorel),(scorel.index(max(scorel))*10)+1)
plt.figure(figsize=[20,5])
plt.plot(range(1,201,10),scorel)
plt.show()
#list.index([object])
#返回这个object在列表list中的索引

机器学习sklearn-随机森林_第10张图片

  1. 在确定好的范围内,进一步细化学习曲线
scorel = []
for i in range(65,75):
    rfc = RandomForestClassifier(n_estimators=i,
                                 n_jobs=-1,
                                 random_state=90)
    score = cross_val_score(rfc,data.data,data.target,cv=10).mean()
    scorel.append(score)
print(max(scorel),([*range(65,75)][scorel.index(max(scorel))]))
plt.figure(figsize=[20,5])
plt.plot(range(65,75),scorel)
plt.show()

机器学习sklearn-随机森林_第11张图片

调整n_estimators的效果显著,接下来就进入网格搜索,我们将使用网格搜索对参数一个个进行调整。为什么我们不同时调整多个参数呢?原因有两个:1)同时调整多个参数会运行非常缓慢。2)同时调整多个参数,会让我们无法理解参数的组合是怎么得来的,所以即便网格搜索调出来的结果不好,我们也不知道从哪里去改。在这里,为了使用复杂度-泛化误差方法(方差-偏差方法),我们对参数进行一个个地调整。

有一些参数是没有参照的,很难说清一个范围,这种情况下我们使用学习曲线,看趋势
从曲线跑出的结果中选取一个更小的区间,再跑曲线

param_grid = {'n_estimators':np.arange(0, 200, 10)}
 
param_grid = {'max_depth':np.arange(1, 20, 1)}
    
param_grid = {'max_leaf_nodes':np.arange(25,50,1)}

对于大型数据集,可以尝试从1000来构建,先输入1000,每100个叶子一个区间,再逐渐缩小范围

有一些参数是可以找到一个范围的,或者说我们知道他们的取值和随着他们的取值,模型的整体准确率会如何变化,这样的参数我们就可以直接跑网格搜索

param_grid = {'criterion':['gini', 'entropy']}
 
param_grid = {'min_samples_split':np.arange(2, 2+20, 1)}
 
param_grid = {'min_samples_leaf':np.arange(1, 1+10, 1)}
    
param_grid = {'max_features':np.arange(5,30,1)} 
  1. 开始按照参数对模型整体准确率的影响程度进行调参,首先调整max_depth
#调整max_depth
 
param_grid = {'max_depth':np.arange(1, 20, 1)}
 
#   一般根据数据的大小来进行一个试探,乳腺癌数据很小,所以可以采用1~10,或者1~20这样的试探
#   但对于像digit recognition那样的大型数据来说,我们应该尝试30~50层深度(或许还不足够
#   更应该画出学习曲线,来观察深度对模型的影响
 
rfc = RandomForestClassifier(n_estimators=73
                             ,random_state=90
                            )
GS = GridSearchCV(rfc,param_grid,cv=10)#网格搜索
GS.fit(data.data,data.target)
 
GS.best_params_#显示调整出来的最佳参数

GS.best_score_#返回调整好的最佳参数对应的准确率

max_features是唯一一个即能够将模型往左(低方差高偏差)推,也能够将模型往右(高方差低偏差)推的参数。我们需要根据调参前,模型所在的位置(在泛化误差最低点的左边还是右边)来决定我们要将max_features往哪边调。现在模型位于图像左侧,我们需要的是更高的复杂度,因此我们应该把max_features往更大的方向调整,可用的特征越多,模型才会越复杂。max_features的默认最小值是sqrt(n_features),因此我们使用这个值作为调参范围的最小值。

对于min_samples_split和min_samples_leaf,一般是从他们的最小值开始向上增加10或20面对高维度高样本量数据,如果不放心,也可以直接+50,对于大型数据,可能需要200~300的范围如果调整的时候发现准确率无论如何都上不来,那可以放心大胆调一个很大的数据,大力限制模型的复杂度

你可能感兴趣的:(笔记,机器学习,sklearn,随机森林)