智能公路的关键技术


1、无线通信技术
泛在网是在异构网络融合和频谱资源共享基础上实现无所不在的网络覆盖,可以利用现有的和新的网络技术,实现无所不在并且按需进行的信息获取、传递、存储、认知、决策、使用等综合服务的网络体系。

目前有大量研究将无线通信技术在智能公路上进行测试和应用。其中光纤无线电(Radio-over-Fiber,ROF)技术是一种可以用于未来建设新型车辆到基础设施(V2I)信息交互的通信系统。Noh等提出了一种扩展了环境感知的范围,并提高了高度自动化驾的情境感知性能的V2I协作系统。Jia等开发一种考虑V2X的增强型合作微观跟车交通模型,同时应用可用于交互式通信的WAVE技术,车辆可以通过使用基础设施通信。

在车路通信的网络性能服务方面,Dey评估了Het-Net的性能,包括Wi-Fi、DSRC和LTE技术,用于V2V和V2I通信。并在此基础上开发了应用层切换方法,以便为两个联网车辆技术(Connected Vehicle Technology,CVT)应用启用Het-Net通信:流量数据收集和前向冲突警告。还成功使用应用层切换技术来维护CVT应用的无缝连接,可以在未来的Het-Net支持的连接车辆应用中采用。

2、高精度定位与导航技术
高精度定位技术是实现车辆安全应用和个性化交通信息服务的基础。随着北斗系统亚米级精度定位技术的逐渐成熟,同时通过在道路基础设施上安装的WLAN信号定位、射频无线标签定位等无线定位技术相结合,有利于高精度定位技术直接应用于城市交通规划和管理、智能公交、车辆安全和辅助驾驶、智能出行等各个领域,从而推动智能公路的技术升级。

在高精度定位技术研究方面,广域精确定位技术可以应用于车辆网络系统,可以在城市环境中提供车道级定位服务。O’Keefe提出了一种将载波相位差分GPS与超宽带(Ultra-wide Bandwidth,UWB)测距紧密耦合的方法,用于车辆到基础设施的相对导航。Haak提出了一种解决车辆定位精度易受数字地图质量影响的车道级高精度车辆定位的方法。Kawamura开发了一种具有超高频射频识别(Radio Frequency Identification Devices,RF-ID)系统的车辆导航系统。Pashaian提出了一种基于模糊逻辑和神经网络的地图匹配法。Dai开发了一个基于车载自组织网络的基于位置的服务。

在提高车辆导航精度方面,Pashaian提出了两种基于模糊逻辑和神经网络的方法来解决汽车导航系统中的匹配问题。Zhang提出了一种利用对称测量方程滤波器进行协同定位以解决数据关联问题的解决方案。Müller提出了一种解决卫星导航误差的协同车辆自定位解决方案,通过使用能够检测和跟踪周围道路基础设施对象的雷达传感器,限制车辆行驶时位置误差的增长。

3、基于车路协同的车辆队列技术
在车辆队列的网络通信技术方面,Di Bernardo等人将车辆队列控制和管理过程视为一种时滞系统,采用Lyapunov–Razumikhin定理对其时滞性进行分析,探究车辆队列系统能够容忍的最大通信时延。Lei等搭建仿真平台,通过仿真方法研究无线通信的丢包率对车辆队列系统性能的影响。目前,基于IEEE 802.11p的DSRC成为Platoon研究者首先研究的网络。IEEE 802.11p具有自组织、低时延等特点,能够满足大多数条件下车辆队列中车间通信的需求。

在车辆队列的运动控制和优化方面,Saeednia将货车编组划分为车队形成、车队保持和车队消散三个阶段。提出了一种混合超车和减速模式的混合策略,对车辆队列形成过程的期望速度进行了优化。

未来在智能公路系统中,将充分利用车路通信V2I的可靠性弥补(V2V)随机性的不足,同时提供实时的高精度地图和高精度无线定位服务,从而保证车辆队列运行的可靠性和安全性。

你可能感兴趣的:(网络)