全文转载地址:
https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/nn/layer/transformer.py
看完 Transformer 的博客或者论文,有老铁肯定想看看代码是怎么写的,本文是从 飞桨Paddle 主框架扒的代码,每一个"__name__ == __main__"
下,都可以需要debug来查看
一共有6个主要类,
MultiHeadAttention
, TransformerEncoderLayer
, TransformerEncoder
TransformerDecoderLayer
, TransformerDecoder
, Transformer
TransformerEncoderLayer
类和 TransformerDecoderLayer
类都会调用 MultiHeadAttention
去组网TransformerEncoder
和 TransformerDecoder
会调用TransformerEncoderLayer
类和 TransformerDecoderLayer
类去重复多次进行组网Transformer
会调用TransformerEncoder
和 TransformerDecoder
去组网还需要注意的一个细节是:
if attn_mask is not None and attn_mask.dtype != dtype:
attn_mask_dtype = convert_dtype(attn_mask.dtype) # paddle.dtype => string
if attn_mask_dtype == 'bool' or 'int' in attn_mask_dtype:
attn_mask = (paddle.cast(attn_mask, dtype) - 1.0) * 1e9 # 因为后面有 softmax
else:
attn_mask = paddle.cast(attn_mask, dtype)
return attn_mask
if attn_mask is not None:
# Support bool or int mask
attn_mask = _convert_attention_mask(attn_mask, product.dtype) # attn_mask in [-1e9, 0]
product = product + attn_mask
weights = F.softmax(product)
由于后面有 softmax,所以我的值越小,越可以使其为0,所以这里有这步操作:
attn_mask = (paddle.cast(attn_mask, dtype) - 1.0) * 1e9
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: define the classes of Transformer neural network
import copy
import collections
import numpy as np__
import paddle
from paddle.nn import LayerNorm, Linear, Dropout, Layer, LayerList
import paddle.nn.functional as F
import paddle.tensor as tensor
import paddle.fluid.layers as layers
from paddle.fluid.data_feeder import convert_dtype
def _convert_param_attr_to_list(param_attr, n):
"""
If `param_attr` is a list or tuple, convert every element in it to a
ParamAttr instance. Otherwise, repeat `param_attr` `n` times to
construct a list, and rename every one by appending a increasing index
suffix to avoid having same names when `param_attr` contains a name.
Parameters:
param_attr (list|tuple|ParamAttr): A list, tuple or something can be
converted to a ParamAttr instance by `ParamAttr._to_attr`.
n (int): The times to repeat to construct a list when `param_attr`
is not a list or tuple.
Returns:
list: A list composed of each including cell's `param_attr`.
"""
if isinstance(param_attr, (list, tuple)):
assert len(param_attr) == n, (
"length of param_attr should be %d when it is a list/tuple" % n)
param_attrs = []
for attr in param_attr:
if isinstance(attr, bool):
if attr:
param_attrs.append(paddle.ParamAttr._to_attr(None))
else:
param_attrs.append(False)
else:
param_attrs.append(paddle.ParamAttr._to_attr(attr))
# param_attrs = [paddle.ParamAttr._to_attr(attr) for attr in param_attr]
elif isinstance(param_attr, bool):
param_attrs = []
if param_attr:
param_attrs = [paddle.ParamAttr._to_attr(None) for i in range(n)]
else:
param_attrs = [False] * n
else:
param_attrs = []
attr = paddle.ParamAttr._to_attr(param_attr)
for i in range(n):
attr_i = copy.deepcopy(attr)
if attr.name:
attr_i.name = attr_i.name + "_" + str(i)
param_attrs.append(attr_i)
return param_attrs
def _convert_attention_mask(attn_mask, dtype):
"""
Convert the attention mask to the target dtype we expect.
Parameters:
attn_mask (Tensor, optional): A tensor used in multi-head attention
to prevents attention to some unwanted positions, usually the
paddings or the subsequent positions. It is a tensor with shape
broadcasted to `[batch_size, n_head, sequence_length, sequence_length]`.
When the data type is bool, the unwanted positions have `False`
values and the others have `True` values. When the data type is
int, the unwanted positions have 0 values and the others have 1
values. When the data type is float, the unwanted positions have
`-INF` values and the others have 0 values. It can be None when
nothing wanted or needed to be prevented attention to. Default None.
dtype (VarType): The target type of `attn_mask` we expect.
Returns:
Tensor: A Tensor with shape same as input `attn_mask`, with data type `dtype`.
"""
if attn_mask is not None and attn_mask.dtype != dtype:
attn_mask_dtype = convert_dtype(attn_mask.dtype) # paddle.dtype => string
if attn_mask_dtype == 'bool' or 'int' in attn_mask_dtype:
attn_mask = (paddle.cast(attn_mask, dtype) - 1.0) * 1e9 # 因为后面有 softmax
else:
attn_mask = paddle.cast(attn_mask, dtype)
return attn_mask
class MultiHeadAttention(Layer):
"""
Attention mapps queries and a set of key-value pairs to outputs, and
Multi-Head Attention performs multiple parallel attention to jointly attending
to information from different representation subspaces.
Please refer to `Attention Is All You Need `_
for more details.
Parameters:
embed_dim (int): The expected feature size in the input and output.
num_heads (int): The number of heads in multi-head attention.
dropout (float, optional): The dropout probability used on attention
weights to drop some attention targets. 0 for no dropout. Default 0
kdim (int, optional): The feature size in key. If None, assumed equal to
`embed_dim`. Default None.
vdim (int, optional): The feature size in value. If None, assumed equal to
`embed_dim`. Default None.
need_weights (bool, optional): Indicate whether to return the attention
weights. Default False.
weight_attr(ParamAttr, optional): To specify the weight parameter property.
Default: None, which means the default weight parameter property is used.
See usage for details in :code:`ParamAttr` .
bias_attr (ParamAttr|bool, optional): To specify the bias parameter property.
Default: None, which means the default bias parameter property is used.
If it is set to False, this layer will not have trainable bias parameter.
See usage for details in :code:`ParamAttr` .
Examples:
.. code-block:: python
import paddle
# encoder input: [batch_size, sequence_length, d_model]
query = paddle.rand((2, 4, 128))
# self attention mask: [batch_size, num_heads, query_len, query_len]
attn_mask = paddle.rand((2, 2, 4, 4))
multi_head_attn = paddle.nn.MultiHeadAttention(128, 2)
output = multi_head_attn(query, None, None, attn_mask=attn_mask) # [2, 4, 128]
"""
Cache = collections.namedtuple("Cache", ["k", "v"])
StaticCache = collections.namedtuple("StaticCache", ["k", "v"])
def __init__(self,
embed_dim,
num_heads,
dropout=0.,
kdim=None,
vdim=None,
need_weights=False,
weight_attr=None,
bias_attr=None):
super(MultiHeadAttention, self).__init__()
assert embed_dim > 0, ("Expected embed_dim to be greater than 0, "
"but received {}".format(embed_dim))
assert num_heads > 0, ("Expected num_heads to be greater than 0, "
"but received {}".format(num_heads))
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.need_weights = need_weights
self.head_dim = embed_dim // num_heads # 做这一步意思是每个 head 做操作最后堆叠是吗?
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
self.q_proj = Linear(embed_dim,
embed_dim,
weight_attr,
bias_attr=bias_attr)
# 因为先做了线性投射层, 所以 kdim 和 vdim 参数可以不同
self.k_proj = Linear(self.kdim,
embed_dim,
weight_attr,
bias_attr=bias_attr)
self.v_proj = Linear(self.vdim,
embed_dim,
weight_attr,
bias_attr=bias_attr)
self.out_proj = Linear(embed_dim,
embed_dim,
weight_attr,
bias_attr=bias_attr)
def _prepare_qkv(self, query, key, value, cache=None):
r"""
Prapares linear projected queries, keys and values for usage of subsequnt
multiple parallel attention. If `cache` is not None, using cached results
to reduce redundant calculations.
Parameters:
query (Tensor): The queries for multi-head attention. It is a
tensor with shape `[batch_size, query_length, embed_dim]`. The
data type should be float32 or float64.
key (Tensor): The keys for multi-head attention. It is
a tensor with shape `[batch_size, key_length, kdim]`. The
data type should be float32 or float64. If None, use `query` as
`key`.
value (Tensor): The values for multi-head attention. It
is a tensor with shape `[batch_size, value_length, vdim]`.
The data type should be float32 or float64. If None, use `query` as
`value`.
cache (MultiHeadAttention.Cache|MultiHeadAttention.StaticCache, optional):
It is a namedtuple with `k` and `v` as fields, and stores tensors
shaped `[batch_size, num_heads, length, embed_dim]` which are results
of linear projection, reshape and transpose calculations in
MultiHeadAttention. If is an instance of `Cache`, `k` and `v`
fields reserve intermediate results of previous positions, which
mostly used for decoder self attention. If it is an instance of
`StaticCache`, `key` and `value` args would be ignored, `k` and
`v` fields would be used as calculated results on `key` and
`value`, which mostly used for decoder-encoder cross attention.
It is only used for inference and should be None for training.
Default None.
Returns:
tuple: A tuple including linear projected keys and values. These two \
tensors have shapes `[batch_size, n_head, sequence_length, d_key]` \
and `[batch_size, n_head, sequence_length, d_value]` separately, \
and their data types are same as inputs.
"""
q = self.q_proj(query)
q = tensor.reshape(x=q, shape=[0, 0, self.num_heads, self.head_dim]) # [0, 0] => [bs, seq_len]
q = tensor.transpose(x=q, perm=[0, 2, 1, 3]) # [bs, num_heads, seq_len, head_dim] 其中 head_dim * num_heads == embed_dim
if isinstance(cache, self.StaticCache): # StaticCache 是 namedtuple 创建的类
# for encoder-decoder attention in inference and has cached
k, v = cache.k, cache.v
else:
k, v = self.compute_kv(key, value) # [bs, num_heads, seq_len, head_dim]
if isinstance(cache, self.Cache):
# for decoder self-attention in inference
k = tensor.concat([cache.k, k], axis=2)
v = tensor.concat([cache.v, v], axis=2)
cache = self.Cache(k, v)
return (q, k, v) if cache is None else (q, k, v, cache)
def compute_kv(self, key, value):
r"""
Applies linear projection on input keys and values, then splits heads
(reshape and transpose) to get keys and values from different representation
subspaces. The results are used as key-values pairs for subsequent multiple
parallel attention.
It is part of calculations in multi-head attention, and is provided as
a method to pre-compute and prefetch these results, thus we can use them
to construct cache for inference.
Parameters:
key (Tensor): The keys for multi-head attention. It is a tensor
with shape `[batch_size, sequence_length, kdim]`. The data type
should be float32 or float64.
value (Tensor): The values for multi-head attention. It is a tensor
with shape `[batch_size, sequence_length, vdim]`. The data type
should be float32 or float64.
Returns:
tuple: A tuple including transformed keys and values. Their shapes \
both are `[batch_size, num_heads, sequence_length, embed_dim // num_heads]`, \
and their data types are same as inputs.
"""
k = self.k_proj(key)
v = self.v_proj(value)
k = tensor.reshape(x=k, shape=[0, 0, self.num_heads, self.head_dim]) # [bs, seq_len, num_heads, head_dim]
k = tensor.transpose(x=k, perm=[0, 2, 1, 3])
v = tensor.reshape(x=v, shape=[0, 0, self.num_heads, self.head_dim])
v = tensor.transpose(x=v, perm=[0, 2, 1, 3])
return k, v
def gen_cache(self, key, value=None, type=Cache):
"""
Generates cache for `forward` usage in inference accroding to arguments.
The generated cache is an instance of `MultiHeadAttention.Cache` or an
instance of `MultiHeadAttention.StaticCache`.
`Cache` or `StaticCache` is namedtuple with `k` and `v` as fields,
and it stores tensors shaped `[batch_size, num_heads, length, embed_dim]`
which are results of linear projection, reshape and transpose calculations
in MultiHeadAttention.
If the generated cache is an instance of `Cache`, `k` and `v` fields
reserve intermediate result tensors of previous positions, and the tensors
are incremental among decoding steps, which mostly are used for decoder
decoder self attention.
If the generated cache is an instance of `StaticCache`, `k` and `v` fields
would be used as calculated result tensors on keys an values in `forward`,
and the tensors keep unchanged among decoding steps, which are mostly used
for decoder-encoder cross attention.
The cache is generated as follows:
1. If `type` is `StaticCache`, apply `compute_kv(key, value)` and use the
results to create an instance of `StaticCache`.
2. If `type` is `Cache` and `value` is None, generate empty tensors shaped
`[batch_size, num_heads, 0, embed_dim // num_heads]` and use the results
to create an instance of `Cache`, where `batch_size` is from the first
dimension of `key`.
3. If `type` is `Cache` and `value` is not None, use `key`, `value` to create
an instance of `Cache`.
Parameters:
key (Tensor): The keys for multi-head attention. It is
a tensor with shape `[batch_size, key_length, kdim]`. The
data type should be float32 or float64. If `value` is None,
it is only for batch size and data type reference.
value (Tensor, optional): The values for multi-head attention. It
is a tensor with shape `[batch_size, value_length, vdim]`.
The data type should be float32 or float64. If None, `key` is only
for batch size reference. Default None.
type (type): It should be `MultiHeadAttention.StaticCache` or
`MultiHeadAttention.Cache` to indicate the cache type to generate.
Returns:
namedtuple: an instance of `Cache` or `StaticCache` accordingly.
"""
if type == MultiHeadAttention.StaticCache: # static_kv
k, v = self.compute_kv(key, value)
return self.StaticCache(k, v)
elif value is None: # incremental_state
k = layers.fill_constant_batch_size_like(
input=key,
shape=[-1, self.num_heads, 0, self.head_dim],
dtype=key.dtype,
value=0)
v = layers.fill_constant_batch_size_like(
input=key,
shape=[-1, self.num_heads, 0, self.head_dim],
dtype=key.dtype,
value=0)
return self.Cache(k, v)
else:
# incremental_state with initial value, mainly for usage like UniLM
return self.Cache(key, value)
def forward(self, query, key=None, value=None, attn_mask=None, cache=None):
r"""
Applies multi-head attention to map queries and a set of key-value pairs
to outputs.
Parameters:
query (Tensor): The queries for multi-head attention. It is a
tensor with shape `[batch_size, query_length, embed_dim]`. The
data type should be float32 or float64.
key (Tensor, optional): The keys for multi-head attention. It is
a tensor with shape `[batch_size, key_length, kdim]`. The
data type should be float32 or float64. If None, use `query` as
`key`. Default None.
value (Tensor, optional): The values for multi-head attention. It
is a tensor with shape `[batch_size, value_length, vdim]`.
The data type should be float32 or float64. If None, use `query` as
`value`. Default None.
attn_mask (Tensor, optional): A tensor used in multi-head attention
to prevents attention to some unwanted positions, usually the
paddings or the subsequent positions. It is a tensor with shape
broadcasted to `[batch_size, n_head, sequence_length, sequence_length]`.
When the data type is bool, the unwanted positions have `False`
values and the others have `True` values. When the data type is
int, the unwanted positions have 0 values and the others have 1
values. When the data type is float, the unwanted positions have
`-INF` values and the others have 0 values. It can be None when
nothing wanted or needed to be prevented attention to. Default None.
cache (MultiHeadAttention.Cache|MultiHeadAttention.StaticCache, optional):
It is a namedtuple with `k` and `v` as fields, and stores tensors
shaped `[batch_size, num_heads, length, embed_dim]` which are results
of linear projection, reshape and transpose calculations in
MultiHeadAttention. If it is an instance of `Cache`, `k` and `v`
fields reserve intermediate results of previous positions, which
mostly used for decoder self attention. If it is an instance of
`StaticCache`, `key` and `value` args would be ignored, `k` and
`v` fields would be used as calculated results on `key` and
`value`, which mostly used for decoder-encoder cross attention.
It is only used for inference and should be None for training.
Default None.
Returns:
Tensor|tuple: It is a tensor that has the same shape and data type \
as `query`, representing attention output. Or a tuple if \
`need_weights` is True or `cache` is not None. If `need_weights` \
is True, except for attention output, the tuple also includes \
the attention weights tensor shaped `[batch_size, num_heads, query_length, key_length]`. \
If `cache` is not None, the tuple then includes the new cache \
having the same type as `cache`, and if it is `StaticCache`, it \
is same as the input `cache`, if it is `Cache`, the new cache \
reserves tensors concatanating raw tensors with intermediate \
results of current query.
"""
# key 和 value 为 None 时, 直接全部赋为 query
key = query if key is None else key
value = query if value is None else value
# compute q ,k ,v
if cache is None:
q, k, v = self._prepare_qkv(query, key, value, cache)
else:
q, k, v, cache = self._prepare_qkv(query, key, value, cache)
# --------------- 以上的 qkv 都是 [bs, num_heads, seq_len, head_dim] ---------------
# scale dot product attention
product = paddle.matmul(x=q * (self.head_dim**-0.5), # [a,b,c,d] @ [a,b,d,c] => [a,b,c,c] (y已转置)
y=k,
transpose_y=True)
if attn_mask is not None:
# Support bool or int mask
attn_mask = _convert_attention_mask(attn_mask, product.dtype) # attn_mask in [-1e9, 0]
product = product + attn_mask
weights = F.softmax(product)
if self.dropout:
weights = F.dropout(weights,
self.dropout,
training=self.training,
mode="upscale_in_train")
out = tensor.matmul(weights, v)
# combine heads
out = tensor.transpose(out, perm=[0, 2, 1, 3]) # [bs, num_head, seq_len, head_dim] => [bs, seq_len, num_head, head_dim]
out = tensor.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]]) # [bs, seq_len, embed_dim] embed_dim = num_head * head_dim
# project to output
out = self.out_proj(out) # 最后的线性投射层
outs = [out]
if self.need_weights:
outs.append(weights)
if cache is not None:
outs.append(cache)
return out if len(outs) == 1 else tuple(outs)
if __name__ == "__main__":
# encoder input: [batch_size, sequence_length, d_model]
query = paddle.rand((2, 4, 128)) # d_model 是 Embd 长度
# self attention mask: [batch_size, num_heads, query_len, query_len]
attn_mask = paddle.rand((2, 2, 4, 4))
multi_head_attn = MultiHeadAttention(128, 2, dropout=0.1107)
output = multi_head_attn(query, None, None, attn_mask=attn_mask) # [2, 4, 128]
print("MultiHeadAttention", output.shape)
class TransformerEncoderLayer(Layer): # 与 Attention 原文的图一致
"""
TransformerEncoderLayer is composed of two sub-layers which are self (multi-head)
attention and feedforward network. Before and after each sub-layer, pre-process
and post-process would be applied on the input and output accordingly. If
`normalize_before` is True, pre-process is layer normalization and post-precess
includes dropout, residual connection. Otherwise, no pre-process and post-precess
includes dropout, residual connection, layer normalization.
Parameters:
d_model (int): The expected feature size in the input and output.
nhead (int): The number of heads in multi-head attention(MHA).
dim_feedforward (int): The hidden layer size in the feedforward network(FFN).
dropout (float, optional): The dropout probability used in pre-process
and post-precess of MHA and FFN sub-layer. Default 0.1
activation (str, optional): The activation function in the feedforward
network. Default relu.
attn_dropout (float, optional): The dropout probability used
in MHA to drop some attention target. If None, use the value of
`dropout`. Default None
act_dropout (float, optional): The dropout probability used after FFN
activition. If None, use the value of `dropout`. Default None
normalize_before (bool, optional): Indicate whether to put layer normalization
into preprocessing of MHA and FFN sub-layers. If True, pre-process is layer
normalization and post-precess includes dropout, residual connection.
Otherwise, no pre-process and post-precess includes dropout, residual
connection, layer normalization. Default False
weight_attr(ParamAttr|list|tuple, optional): To specify the weight parameter property.
If it is a list/tuple, `weight_attr[0]` would be used as `weight_attr` for
MHA, and `weight_attr[1]` would be used as `weight_attr` for linear in FFN.
Otherwise, MHA and FFN both use it as `weight_attr` to create parameters.
Default: None, which means the default weight parameter property is used.
See usage for details in :code:`ParamAttr` .
bias_attr (ParamAttr|list|tuple|bool, optional): To specify the bias parameter property.
If it is a list/tuple, `bias_attr[0]` would be used as `bias_attr` for
MHA, and `bias_attr[1]` would be used as `bias_attr` for linear in FFN.
Otherwise, MHA and FFN both use it as `bias_attr` to create parameters.
The `False` value means the corresponding layer would not have trainable
bias parameter. See usage for details in :code:`ParamAttr` . Default: None,
which means the default bias parameter property is used.
Examples:
.. code-block:: python
import paddle
from paddle.nn import TransformerEncoderLayer
# encoder input: [batch_size, src_len, d_model]
enc_input = paddle.rand((2, 4, 128))
# self attention mask: [batch_size, n_head, src_len, src_len]
attn_mask = paddle.rand((2, 2, 4, 4))
encoder_layer = TransformerEncoderLayer(128, 2, 512)
enc_output = encoder_layer(enc_input, attn_mask) # [2, 4, 128]
"""
def __init__(self,
d_model,
nhead,
dim_feedforward,
dropout=0.1,
activation="relu",
attn_dropout=None,
act_dropout=None,
normalize_before=False,
weight_attr=None,
bias_attr=None):
self._config = locals()
self._config.pop("self")
self._config.pop("__class__", None) # py3 # why?
super(TransformerEncoderLayer, self).__init__()
assert d_model > 0, ("Expected d_model to be greater than 0, "
"but received {}".format(d_model))
assert nhead > 0, ("Expected nhead to be greater than 0, "
"but received {}".format(nhead))
assert dim_feedforward > 0, (
"Expected dim_feedforward to be greater than 0, "
"but received {}".format(dim_feedforward))
attn_dropout = dropout if attn_dropout is None else attn_dropout
act_dropout = dropout if act_dropout is None else act_dropout
self.normalize_before = normalize_before
weight_attrs = _convert_param_attr_to_list(weight_attr, 2)
bias_attrs = _convert_param_attr_to_list(bias_attr, 2)
self.self_attn = MultiHeadAttention(d_model,
nhead,
dropout=attn_dropout,
weight_attr=weight_attrs[0],
bias_attr=bias_attrs[0])
self.linear1 = Linear(d_model,
dim_feedforward,
weight_attrs[1],
bias_attr=bias_attrs[1])
self.dropout = Dropout(act_dropout, mode="upscale_in_train")
self.linear2 = Linear(dim_feedforward,
d_model,
weight_attrs[1],
bias_attr=bias_attrs[1])
self.norm1 = LayerNorm(d_model)
self.norm2 = LayerNorm(d_model)
self.dropout1 = Dropout(dropout, mode="upscale_in_train")
self.dropout2 = Dropout(dropout, mode="upscale_in_train")
self.activation = getattr(F, activation)
def forward(self, src, src_mask=None, cache=None):
r"""
Applies a Transformer encoder layer on the input.
Parameters:
src (Tensor): The input of Transformer encoder layer. It is
a tensor with shape `[batch_size, sequence_length, d_model]`.
The data type should be float32 or float64.
src_mask (Tensor, optional): A tensor used in multi-head attention
to prevents attention to some unwanted positions, usually the
paddings or the subsequent positions. It is a tensor with shape
broadcasted to `[batch_size, n_head, sequence_length, sequence_length]`.
When the data type is bool, the unwanted positions have `False`
values and the others have `True` values. When the data type is
int, the unwanted positions have 0 values and the others have 1
values. When the data type is float, the unwanted positions have
`-INF` values and the others have 0 values. It can be None when
nothing wanted or needed to be prevented attention to. Default None.
cache (Tensor, optional): It is an instance of `MultiHeadAttention.Cache`.
See `TransformerEncoderLayer.gen_cache` for more details. It is
only used for inference and should be None for training. Default
None.
Returns:
Tensor|tuple: It is a tensor that has the same shape and data type \
as `enc_input`, representing the output of Transformer encoder \
layer. Or a tuple if `cache` is not None, except for encoder \
layer output, the tuple includes the new cache which is same \
as input `cache` argument but `incremental_cache` has an \
incremental length. See `MultiHeadAttention.gen_cache` and \
`MultiHeadAttention.forward` for more details.
"""
src_mask = _convert_attention_mask(src_mask, src.dtype) # src_mask 是不愿注意到的地方
residual = src # [bs, seq_len, d_model(emdb_size)]
if self.normalize_before:
src = self.norm1(src)
# Add cache for encoder for the usage like UniLM
if cache is None:
src = self.self_attn(src, src, src, src_mask) # 先来一个自注意力 # 看 Attention 原文 qkv 都是一个值
else:
src, incremental_cache = self.self_attn(src, src, src, src_mask,
cache)
src = residual + self.dropout1(src)
if not self.normalize_before:
src = self.norm1(src)
residual = src
if self.normalize_before:
src = self.norm2(src)
src = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = residual + self.dropout2(src)
if not self.normalize_before:
src = self.norm2(src)
return src if cache is None else (src, incremental_cache)
def gen_cache(self, src):
r"""
Generates cache for `forward` usage. The generated cache is an
instance of `MultiHeadAttention.Cache`.
Parameters:
src (Tensor): The input of Transformer encoder. It is a tensor
with shape `[batch_size, source_length, d_model]`. The data
type should be float32 or float64.
Returns:
incremental_cache: It is an instance of `MultiHeadAttention.Cache` \
produced by `self_attn.gen_cache`, it reserves two tensors
shaped `[batch_size, nhead, 0, d_model // nhead]`. See \
`MultiHeadAttention.gen_cache` and `MultiHeadAttention.forward` \
for more details.
"""
incremental_cache = self.self_attn.gen_cache(src,
type=self.self_attn.Cache)
return incremental_cache
if __name__ == "__main__":
# encoder input: [batch_size, seq_len, d_model]
enc_input = paddle.rand((16, 4, 128))
# self attention mask: [batch_size, n_head, seq_len, seq_len]
attn_mask = paddle.rand((16, 2, 4, 4))
encoder_layer = TransformerEncoderLayer(128, 2, 512) # [d_model, nhead, dim_feedforward] d_model => d_model 是 Embd 长度
enc_output = encoder_layer(enc_input, attn_mask) # [16, 4, 128] # [bs, seq_len, d_model]
print("TransformerEncoderLayer", enc_output.shape)
class TransformerEncoder(Layer): # encoder layers 的堆叠
"""
TransformerEncoder is a stack of N encoder layers.
Parameters:
encoder_layer (Layer): an instance of the `TransformerEncoderLayer`. It
would be used as the first layer, and the other layers would be created
according to the configurations of it.
num_layers (int): The number of encoder layers to be stacked.
norm (LayerNorm, optional): the layer normalization component. If provided,
apply layer normalization on the output of last encoder layer.
Examples:
.. code-block:: python
import paddle
from paddle.nn import TransformerEncoderLayer, TransformerEncoder
# encoder input: [batch_size, src_len, d_model]
enc_input = paddle.rand((2, 4, 128))
# self attention mask: [batch_size, n_head, src_len, src_len]
attn_mask = paddle.rand((2, 2, 4, 4))
encoder_layer = TransformerEncoderLayer(128, 2, 512)
encoder = TransformerEncoder(encoder_layer, 2)
enc_output = encoder(enc_input, attn_mask) # [2, 4, 128]
"""
def __init__(self, encoder_layer, num_layers, norm=None):
super(TransformerEncoder, self).__init__()
self.layers = LayerList([
(encoder_layer if i == 0 else type(encoder_layer)( # 这里要重新创建所以 `._config` 其他有用 deepcopy 实现的
**encoder_layer._config)) for i in range(num_layers)
])
self.num_layers = num_layers
self.norm = norm
def forward(self, src, src_mask=None, cache=None):
r"""
Applies a stack of N Transformer encoder layers on inputs. If `norm` is
provided, also applies layer normalization on the output of last encoder
layer.
Parameters:
src (Tensor): The input of Transformer encoder. It is a tensor
with shape `[batch_size, sequence_length, d_model]`. The data
type should be float32 or float64.
src_mask (Tensor, optional): A tensor used in multi-head attention
to prevents attention to some unwanted positions, usually the
paddings or the subsequent positions. It is a tensor with shape
broadcasted to `[batch_size, n_head, sequence_length, sequence_length]`.
When the data type is bool, the unwanted positions have `False`
values and the others have `True` values. When the data type is
int, the unwanted positions have 0 values and the others have 1
values. When the data type is float, the unwanted positions have
`-INF` values and the others have 0 values. It can be None when
nothing wanted or needed to be prevented attention to. Default None.
cache (list, optional): It is a list, and each element in the list
is `incremental_cache` produced by `TransformerEncoderLayer.gen_cache`.
See `TransformerEncoder.gen_cache` for more details. It is only
used for inference and should be None for training. Default None.
Returns:
Tensor|tuple: It is a tensor that has the same shape and data type \
as `src`, representing the output of Transformer encoder. \
Or a tuple if `cache` is not None, except for encoder output, \
the tuple includes the new cache which is same as input `cache` \
argument but `incremental_cache` in it has an incremental length. \
See `MultiHeadAttention.gen_cache` and `MultiHeadAttention.forward` \
for more details.
"""
src_mask = _convert_attention_mask(src_mask, src.dtype)
output = src
new_caches = []
for i, mod in enumerate(self.layers):
if cache is None:
output = mod(output, src_mask=src_mask)
else:
output, new_cache = mod(output,
src_mask=src_mask,
cache=cache[i])
new_caches.append(new_cache)
if self.norm is not None:
output = self.norm(output)
return output if cache is None else (output, new_caches)
def gen_cache(self, src):
r"""
Generates cache for `forward` usage. The generated cache is a list, and
each element in it is `incremental_cache` produced by
`TransformerEncoderLayer.gen_cache`. See `TransformerEncoderLayer.gen_cache`
for more details.
Parameters:
src (Tensor): The input of Transformer encoder. It is a tensor
with shape `[batch_size, source_length, d_model]`. The data type
should be float32 or float64.
Returns:
list: It is a list, and each element in the list is `incremental_cache`
produced by `TransformerEncoderLayer.gen_cache`. See
`TransformerEncoderLayer.gen_cache` for more details.
"""
cache = [layer.gen_cache(src) for layer in self.layers]
return cache
if __name__ == "__main__":
# encoder input: [batch_size, src_len, d_model]
enc_input = paddle.rand((32, 4, 128))
# self attention mask: [batch_size, n_head, src_len, src_len]
attn_mask = paddle.rand((32, 2, 4, 4))
encoder_layer = TransformerEncoderLayer(128, 2, 512) # [d_model, nheads(num_heads), dim_feedforward]
encoder = TransformerEncoder(encoder_layer, 8) # encoder_layer, num_layers(重复的次数)
enc_output = encoder(enc_input, attn_mask) # [32, 4, 128] # [bs, seq_len, d_model(embd_size)]
print("TransformerEncoder", enc_output.shape)
class TransformerDecoderLayer(Layer):
"""
TransformerDecoderLayer is composed of three sub-layers which are decoder
self (multi-head) attention, decoder-encoder cross attention and feedforward
network. Before and after each sub-layer, pre-process and post-precess would
be applied on the input and output accordingly. If `normalize_before` is True,
pre-process is layer normalization and post-precess includes dropout, residual
connection. Otherwise, no pre-process and post-precess includes dropout, residual
connection, layer normalization.
Parameters:
d_model (int): The expected feature size in the input and output.
nhead (int): The number of heads in multi-head attention(MHA).
dim_feedforward (int): The hidden layer size in the feedforward network(FFN).
dropout (float, optional): The dropout probability used in pre-process
and post-precess of MHA and FFN sub-layer. Default 0.1
activation (str, optional): The activation function in the feedforward
network. Default relu.
attn_dropout (float, optional): The dropout probability used
in MHA to drop some attention target. If None, use the value of
`dropout`. Default None
act_dropout (float, optional): The dropout probability used after FFN
activition. If None, use the value of `dropout`. Default None
normalize_before (bool, optional): Indicate whether to put layer normalization
into preprocessing of MHA and FFN sub-layers. If True, pre-process is layer
normalization and post-precess includes dropout, residual connection.
Otherwise, no pre-process and post-precess includes dropout, residual
connection, layer normalization. Default False
weight_attr(ParamAttr|list|tuple, optional): To specify the weight parameter property.
If it is a list/tuple, `weight_attr[0]` would be used as `weight_attr` for
self attention, `weight_attr[1]` would be used as `weight_attr` for
cross attention, and `weight_attr[2]` would be used as `weight_attr`
for linear in FFN. Otherwise, the three sub-layers all uses it as
`weight_attr` to create parameters. Default: None, which means the
default weight parameter property is used. See usage for details
in :ref:`api_paddle_fluid_param_attr_ParamAttr` .
bias_attr (ParamAttr|list|tuple|bool, optional): To specify the bias parameter property.
If it is a list/tuple, `bias_attr[0]` would be used as `bias_attr` for
self attention, `bias_attr[1]` would be used as `bias_attr` for
cross attention, and `bias_attr[2]` would be used as `bias_attr`
for linear in FFN. Otherwise, the three sub-layers all uses it as
`bias_attr` to create parameters. The `False` value means the
corresponding layer would not have trainable bias parameter. See
usage for details in :code:`ParamAttr` . Default: None,which means
the default bias parameter property is used.
Examples:
.. code-block:: python
import paddle
from paddle.nn import TransformerDecoderLayer
# decoder input: [batch_size, tgt_len, d_model]
dec_input = paddle.rand((2, 4, 128))
# encoder output: [batch_size, src_len, d_model]
enc_output = paddle.rand((2, 6, 128))
# self attention mask: [batch_size, n_head, tgt_len, tgt_len]
self_attn_mask = paddle.rand((2, 2, 4, 4))
# cross attention mask: [batch_size, n_head, tgt_len, src_len]
cross_attn_mask = paddle.rand((2, 2, 4, 6))
decoder_layer = TransformerDecoderLayer(128, 2, 512)
output = decoder_layer(dec_input,
enc_output,
self_attn_mask,
cross_attn_mask) # [2, 4, 128]
"""
def __init__(self,
d_model,
nhead,
dim_feedforward,
dropout=0.1,
activation="relu",
attn_dropout=None,
act_dropout=None,
normalize_before=False,
weight_attr=None,
bias_attr=None):
self._config = locals()
self._config.pop("self")
self._config.pop("__class__", None) # py3
super(TransformerDecoderLayer, self).__init__()
assert d_model > 0, ("Expected d_model to be greater than 0, "
"but received {}".format(d_model))
assert nhead > 0, ("Expected nhead to be greater than 0, "
"but received {}".format(nhead))
assert dim_feedforward > 0, (
"Expected dim_feedforward to be greater than 0, "
"but received {}".format(dim_feedforward))
attn_dropout = dropout if attn_dropout is None else attn_dropout
act_dropout = dropout if act_dropout is None else act_dropout
self.normalize_before = normalize_before
weight_attrs = _convert_param_attr_to_list(weight_attr, 3)
bias_attrs = _convert_param_attr_to_list(bias_attr, 3)
self.self_attn = MultiHeadAttention(d_model,
nhead,
dropout=attn_dropout,
weight_attr=weight_attrs[0],
bias_attr=bias_attrs[0])
self.cross_attn = MultiHeadAttention(d_model,
nhead,
dropout=attn_dropout,
weight_attr=weight_attrs[1],
bias_attr=bias_attrs[1])
self.linear1 = Linear(d_model,
dim_feedforward,
weight_attrs[2],
bias_attr=bias_attrs[2])
self.dropout = Dropout(act_dropout, mode="upscale_in_train")
self.linear2 = Linear(dim_feedforward,
d_model,
weight_attrs[2],
bias_attr=bias_attrs[2])
self.norm1 = LayerNorm(d_model)
self.norm2 = LayerNorm(d_model)
self.norm3 = LayerNorm(d_model)
self.dropout1 = Dropout(dropout, mode="upscale_in_train")
self.dropout2 = Dropout(dropout, mode="upscale_in_train")
self.dropout3 = Dropout(dropout, mode="upscale_in_train")
self.activation = getattr(F, activation)
def forward(self, tgt, memory, tgt_mask=None, memory_mask=None, cache=None):
r"""
Applies a Transformer decoder layer on the input.
Parameters:
tgt (Tensor): The input of Transformer decoder layer. It is a tensor
with shape `[batch_size, target_length, d_model]`. The data type
should be float32 or float64.
memory (Tensor): The output of Transformer encoder. It is a tensor
with shape `[batch_size, source_length, d_model]`. The data type
should be float32 or float64.
tgt_mask (Tensor, optional): A tensor used in self attention
to prevents attention to some unwanted positions, usually the
the subsequent positions. It is a tensor with shape broadcasted
to `[batch_size, n_head, target_length, target_length]`.
When the data type is bool, the unwanted positions have `False`
values and the others have `True` values. When the data type is
int, the unwanted positions have 0 values and the others have 1
values. When the data type is float, the unwanted positions have
`-INF` values and the others have 0 values. It can be None when
nothing wanted or needed to be prevented attention to. Default None.
memory_mask (Tensor, optional): A tensor used in decoder-encoder
cross attention to prevents attention to some unwanted positions,
usually the paddings. It is a tensor with shape broadcasted to
`[batch_size, n_head, target_length, source_length]`. When the
data type is bool, the unwanted positions have `False` values
and the others have `True` values. When the data type is int,
the unwanted positions have 0 values and the others have 1
values. When the data type is float, the unwanted positions have
`-INF` values and the others have 0 values. It can be None when
nothing wanted or needed to be prevented attention to. Default None.
cache (tuple, optional): It is a tuple( :code:`(incremental_cache, static_cache)` ),
`incremental_cache` is an instance of `MultiHeadAttention.Cache`,
`static_cache` is an instance of `MultiHeadAttention.StaticCache.
See `TransformerDecoderLayer.gen_cache` for more details. It is
only used for inference and should be None for training. Default
None.
Returns:
Tensor|tuple: It is a tensor that has the same shape and data type \
as `tgt`, representing the output of Transformer decoder layer. \
Or a tuple if `cache` is not None, except for decoder layer output, \
the tuple includes the new cache which is same as input `cache` \
argument but `incremental_cache` in it has an incremental length. \
See `MultiHeadAttention.gen_cache` and `MultiHeadAttention.forward` \
for more details.
"""
tgt_mask = _convert_attention_mask(tgt_mask, tgt.dtype)
memory_mask = _convert_attention_mask(memory_mask, memory.dtype)
# ----------------- 以下是 Masked Multi-Head Attention -----------------
residual = tgt
if self.normalize_before:
tgt = self.norm1(tgt)
if cache is None:
tgt = self.self_attn(tgt, tgt, tgt, tgt_mask, None)
else:
tgt, incremental_cache = self.self_attn(tgt, tgt, tgt, tgt_mask,
cache[0])
tgt = residual + self.dropout1(tgt)
if not self.normalize_before:
tgt = self.norm1(tgt)
# ----------------- 以下是 Multi-Head Attention -----------------
residual = tgt
if self.normalize_before:
tgt = self.norm2(tgt)
if cache is None:
tgt = self.cross_attn(tgt, memory, memory, memory_mask, None)
else:
tgt, static_cache = self.cross_attn(tgt, memory, memory,
memory_mask, cache[1])
tgt = residual + self.dropout2(tgt)
if not self.normalize_before:
tgt = self.norm2(tgt)
residual = tgt
if self.normalize_before:
tgt = self.norm3(tgt)
tgt = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
tgt = residual + self.dropout3(tgt)
if not self.normalize_before:
tgt = self.norm3(tgt)
return tgt if cache is None else (tgt, (incremental_cache,
static_cache))
def gen_cache(self, memory):
r"""
Generates cache for `forward` usage. The generated cache is a tuple
composed of an instance of `MultiHeadAttention.Cache` and an instance
of `MultiHeadAttention.StaticCache`.
Parameters:
memory (Tensor): The output of Transformer encoder. It is a tensor
with shape `[batch_size, source_length, d_model]`. The data type
should be float32 or float64.
Returns:
tuple: It is a tuple( :code:`(incremental_cache, static_cache)` ). \
`incremental_cache` is an instance of `MultiHeadAttention.Cache` \
produced by `self_attn.gen_cache(memory, MultiHeadAttention.Cache)`, \
it reserves two tensors shaped `[batch_size, nhead, 0, d_model // nhead]`. \
`static_cache` is an instance of `MultiHeadAttention.StaticCache` \
produced by `cross_attn.gen_cache(memory, MultiHeadAttention.StaticCache)`, \
it reserves two tensors shaped `[batch_size, nhead, source_length, d_model // nhead]`.
See `MultiHeadAttention.gen_cache` and `MultiHeadAttention.forward` \
for more details.
"""
incremental_cache = self.self_attn.gen_cache(memory,
type=self.self_attn.Cache)
static_cache = self.cross_attn.gen_cache(
memory, memory, type=self.cross_attn.StaticCache)
return incremental_cache, static_cache
if __name__ == "__main__":
# decoder input: [batch_size, tgt_len, d_model]
dec_input = paddle.rand((2, 4, 128))
# encoder output: [batch_size, src_len, d_model]
enc_output = paddle.rand((2, 6, 128))
# self attention mask: [batch_size, n_head, tgt_len, tgt_len]
self_attn_mask = paddle.rand((2, 2, 4, 4))
# cross attention mask: [batch_size, n_head, tgt_len, src_len]
cross_attn_mask = paddle.rand((2, 2, 4, 6))
decoder_layer = TransformerDecoderLayer(128, 2, 512) # d_model, nhead, dim_feedforward
output = decoder_layer(dec_input,
enc_output, # memory
self_attn_mask,
cross_attn_mask) # [2, 4, 128] # [bs, seq_len, d_model]
print("TransformerDecoderLayer", output.shape) # output.shape == dec_input.shape
class TransformerDecoder(Layer):
"""
TransformerDecoder is a stack of N decoder layers.
Parameters:
decoder_layer (Layer): an instance of the `TransformerDecoderLayer`. It
would be used as the first layer, and the other layers would be created
according to the configurations of it.
num_layers (int): The number of decoder layers to be stacked.
norm (LayerNorm, optional): the layer normalization component. If provided,
apply layer normalization on the output of last encoder layer.
Examples:
.. code-block:: python
import paddle
from paddle.nn import TransformerDecoderLayer, TransformerDecoder
# decoder input: [batch_size, tgt_len, d_model]
dec_input = paddle.rand((2, 4, 128))
# encoder output: [batch_size, src_len, d_model]
enc_output = paddle.rand((2, 6, 128))
# self attention mask: [batch_size, n_head, tgt_len, tgt_len]
self_attn_mask = paddle.rand((2, 2, 4, 4))
# cross attention mask: [batch_size, n_head, tgt_len, src_len]
cross_attn_mask = paddle.rand((2, 2, 4, 6))
decoder_layer = TransformerDecoderLayer(128, 2, 512)
decoder = TransformerDecoder(decoder_layer, 2)
output = decoder(dec_input,
enc_output,
self_attn_mask,
cross_attn_mask) # [2, 4, 128]
"""
def __init__(self, decoder_layer, num_layers, norm=None):
super(TransformerDecoder, self).__init__()
self.layers = LayerList([
(decoder_layer if i == 0 else type(decoder_layer)(
**decoder_layer._config)) for i in range(num_layers)
])
self.num_layers = num_layers
self.norm = norm
def forward(self, tgt, memory, tgt_mask=None, memory_mask=None, cache=None):
r"""
Applies a stack of N Transformer decoder layers on inputs. If `norm` is
provided, also applies layer normalization on the output of last decoder
layer.
Parameters:
tgt (Tensor): The input of Transformer decoder. It is a tensor
with shape `[batch_size, target_length, d_model]`. The data type
should be float32 or float64.
memory (Tensor): The output of Transformer encoder. It is a tensor
with shape `[batch_size, source_length, d_model]`. The data type
should be float32 or float64.
tgt_mask (Tensor, optional): A tensor used in self attention
to prevents attention to some unwanted positions, usually the
the subsequent positions. It is a tensor with shape broadcasted
to `[batch_size, n_head, target_length, target_length]`. When
the data type is bool, the unwanted positions have `False`
values and the others have `True` values. When the data type is
int, the unwanted positions have 0 values and the others have 1
values. When the data type is float, the unwanted positions have
`-INF` values and the others have 0 values. It can be None when
nothing wanted or needed to be prevented attention to. Default None.
memory_mask (Tensor, optional): A tensor used in decoder-encoder
cross attention to prevents attention to some unwanted positions,
usually the paddings. It is a tensor with shape broadcasted to
`[batch_size, n_head, target_length, source_length]`. When the
data type is bool, the unwanted positions have `False` values
and the others have `True` values. When the data type is int,
the unwanted positions have 0 values and the others have 1
values. When the data type is float, the unwanted positions have
`-INF` values and the others have 0 values. It can be None when
nothing wanted or needed to be prevented attention to. Default None.
cache (list, optional): It is a list, and each element in the list
is a tuple( :code:`(incremental_cache, static_cache)` ). See
`TransformerDecoder.gen_cache` for more details. It is only
used for inference and should be None for training. Default None.
Returns:
Tensor|tuple: It is a tensor that has the same shape and data type \
as `tgt`, representing the output of Transformer decoder. \
Or a tuple if `cache` is not None, except for decoder output, \
the tuple includes the new cache which is same as input `cache` \
argument but `incremental_cache` in it has an incremental length. \
See `MultiHeadAttention.gen_cache` and `MultiHeadAttention.forward` \
for more details.
"""
tgt_mask = _convert_attention_mask(tgt_mask, tgt.dtype)
memory_mask = _convert_attention_mask(memory_mask, memory.dtype)
output = tgt
new_caches = []
for i, mod in enumerate(self.layers):
if cache is None:
output = mod(output,
memory,
tgt_mask=tgt_mask,
memory_mask=memory_mask,
cache=None)
else:
output, new_cache = mod(output,
memory,
tgt_mask=tgt_mask,
memory_mask=memory_mask,
cache=cache[i])
new_caches.append(new_cache)
if self.norm is not None:
output = self.norm(output)
return output if cache is None else (output, new_caches)
def gen_cache(self, memory, do_zip=False):
r"""
Generates cache for `forward` usage. The generated cache is a list, and
each element in it is a tuple( :code:`(incremental_cache, static_cache)` )
produced by `TransformerDecoderLayer.gen_cache`. See `TransformerDecoderLayer.gen_cache`
for more details. If `do_zip` is True, apply `zip` on these tuples to get
a list with two elements.
Parameters:
memory (Tensor): The output of Transformer encoder. It is a tensor
with shape `[batch_size, source_length, d_model]`. The data type
should be float32 or float64.
do_zip (bool, optional): Indicate whether to apply `zip` on the tuples.
If True, return a list with two elements. Default False
Returns:
list: It is a list, and each element in the list is a tuple produced \
by `TransformerDecoderLayer.gen_cache(memory)`. See `TransformerDecoderLayer.gen_cache` \
for more details. If `do_zip` is True, apply `zip` on these tuples \
and return a list with two elements.
"""
cache = [layer.gen_cache(memory) for layer in self.layers]
if do_zip:
cache = list(zip(*cache))
return cache
if __name__ == "__main__":
# decoder input: [batch_size, tgt_len, d_model]
dec_input = paddle.rand((2, 4, 128))
# encoder output: [batch_size, src_len, d_model]
enc_output = paddle.rand((2, 6, 128))
# self attention mask: [batch_size, n_head, tgt_len, tgt_len]
self_attn_mask = paddle.rand((2, 2, 4, 4))
# cross attention mask: [batch_size, n_head, tgt_len, src_len]
cross_attn_mask = paddle.rand((2, 2, 4, 6))
decoder_layer = TransformerDecoderLayer(128, 2, 512) # d_model, nhead, dim_feedforward
decoder = TransformerDecoder(decoder_layer, 2)
output = decoder(dec_input,
enc_output,
self_attn_mask,
cross_attn_mask) # [2, 4, 128]
print("TransformerDecoder", output.shape)
class Transformer(Layer):
"""
A Transformer model composed of an instance of `TransformerEncoder` and an
instance of `TransformerDecoder`. While the embedding layer and output layer
are not included.
Please refer to `Attention is all you need `_ ,
and see `TransformerEncoder` and `TransformerDecoder` for more details.
Users can configurate the model architecture with corresponding parameters.
Note the usage of `normalize_before` representing where to apply layer
normalization (in pre-process or post-precess of multi-head attention or FFN),
and some transformer like models are different on this, such as
`BERT `_ and `GPT2 `_ .
The default architecture here places layer normalization in post-process and
applies another layer normalization on the output of last encoder/decoder layer.
Parameters:
d_model (int, optional): The expected feature size in the encoder/decoder input
and output. Default 512
nhead (int, optional): The number of heads in multi-head attention(MHA). Default 8
num_encoder_layers (int, optional): The number of layers in encoder. Default 6
num_decoder_layers (int, optional): The number of layers in decoder. Default 6
dim_feedforward (int, optional): The hidden layer size in the feedforward network(FFN). Default 2048
dropout (float, optional): The dropout probability used in pre-process
and post-precess of MHA and FFN sub-layer. Default 0.1
activation (str, optional): The activation function in the feedforward
network. Default relu.
attn_dropout (float, optional): The dropout probability used
in MHA to drop some attention target. If None, use the value of
`dropout`. Default None
act_dropout (float, optional): The dropout probability used after FFN
activition. If None, use the value of `dropout`. Default None
normalize_before (bool, optional): Indicate whether to put layer normalization
into preprocessing of MHA and FFN sub-layers. If True, pre-process is layer
normalization and post-precess includes dropout, residual connection.
Otherwise, no pre-process and post-precess includes dropout, residual
connection, layer normalization. Default False
weight_attr(ParamAttr|list|tuple, optional): To specify the weight parameter property.
If it is a list/tuple, the length of `weight_attr` could be 1, 2 or 3. If it is 3,
`weight_attr[0]` would be used as `weight_attr` for self attention, `weight_attr[1]`
would be used as `weight_attr` for cross attention of `TransformerDecoder`,
and `weight_attr[2]` would be used as `weight_attr` for linear in FFN.
If it is 2, `weight_attr[0]` would be used as `weight_attr` both for self attention
and cross attntion and `weight_attr[1]` would be used as `weight_attr` for
linear in FFN. If it is 1, `weight_attr[0]` would be used as `weight_attr`
for self attention, cross attention and linear in FFN. Otherwise,
the three sub-layers all uses it as `weight_attr` to create parameters.
Default: None, which means the default weight parameter property is used.
See usage for details
in :code:`ParamAttr` .
bias_attr (ParamAttr|list|tuple|bool, optional): To specify the bias parameter property.
If it is a list/tuple, the length of `bias_attr` could be 1, 2 or 3. If it is 3,
`bias_attr[0]` would be used as `bias_attr` for self attention, `bias_attr[1]`
would be used as `bias_attr` for cross attention of `TransformerDecoder`,
and `bias_attr[2]` would be used as `bias_attr` for linear in FFN.
If it is 2, `bias_attr[0]` would be used as `bias_attr` both for self attention
and cross attntion and `bias_attr[1]` would be used as `bias_attr` for
linear in FFN. If it is 1, `bias_attr[0]` would be used as `bias_attr`
for self attention, cross attention and linear in FFN. Otherwise,
the three sub-layers all uses it as `bias_attr` to create parameters.
The `False` value means the corresponding layer would not have trainable
bias parameter. See usage for details in :code:`ParamAttr` .
Default: None,which means the default bias parameter property is used.
custom_encoder (Layer, optional): If custom encoder is provided, use it as the encoder.
Default None
custom_decoder (Layer, optional): If custom decoder is provided, use it as the decoder.
Default None
Examples:
.. code-block:: python
import paddle
from paddle.nn import Transformer
# src: [batch_size, tgt_len, d_model]
enc_input = paddle.rand((2, 4, 128))
# tgt: [batch_size, src_len, d_model]
dec_input = paddle.rand((2, 6, 128))
# src_mask: [batch_size, n_head, src_len, src_len]
enc_self_attn_mask = paddle.rand((2, 2, 4, 4))
# tgt_mask: [batch_size, n_head, tgt_len, tgt_len]
dec_self_attn_mask = paddle.rand((2, 2, 6, 6))
# memory_mask: [batch_size, n_head, tgt_len, src_len]
cross_attn_mask = paddle.rand((2, 2, 6, 4))
transformer = Transformer(128, 2, 4, 4, 512)
output = transformer(enc_input,
dec_input,
enc_self_attn_mask,
dec_self_attn_mask,
cross_attn_mask) # [2, 6, 128]
"""
def __init__(self,
d_model=512,
nhead=8,
num_encoder_layers=6,
num_decoder_layers=6,
dim_feedforward=2048,
dropout=0.1,
activation="relu",
attn_dropout=None,
act_dropout=None,
normalize_before=False,
weight_attr=None,
bias_attr=None,
custom_encoder=None,
custom_decoder=None):
super(Transformer, self).__init__()
assert d_model > 0, ("Expected d_model to be greater than 0, "
"but received {}".format(d_model))
assert nhead > 0, ("Expected nhead to be greater than 0, "
"but received {}".format(nhead))
assert dim_feedforward > 0, (
"Expected dim_feedforward to be greater than 0, "
"but received {}".format(dim_feedforward))
if isinstance(bias_attr, (list, tuple)):
if len(bias_attr) == 1:
encoder_bias_attr = [bias_attr[0]] * 2
decoder_bias_attr = [bias_attr[0]] * 3
elif len(bias_attr) == 2:
encoder_bias_attr = bias_attr
decoder_bias_attr = [bias_attr[0], bias_attr[0], bias_attr[-1]]
elif len(bias_attr) == 3:
encoder_bias_attr = [bias_attr[0], bias_attr[-1]]
decoder_bias_attr = bias_attr
else:
assert False, (
"length of bias_attr should be 1 or 2 or 3 when it is a list/tuple"
)
else:
encoder_bias_attr = bias_attr
decoder_bias_attr = bias_attr
if isinstance(weight_attr, (list, tuple)):
if len(weight_attr) == 1:
encoder_weight_attr = [weight_attr[0]] * 2
decoder_weight_attr = [weight_attr[0]] * 3
elif len(weight_attr) == 2:
encoder_weight_attr = weight_attr
decoder_weight_attr = [
weight_attr[0], weight_attr[0], weight_attr[-1]
]
elif len(weight_attr) == 3:
encoder_weight_attr = [weight_attr[0], weight_attr[-1]]
decoder_weight_attr = weight_attr
else:
assert False, (
"length of weight_attr should be 1 or 2 or 3 when it is a list/tuple"
)
else:
encoder_weight_attr = weight_attr
decoder_weight_attr = weight_attr
if custom_encoder is not None:
self.encoder = custom_encoder
else:
encoder_layer = TransformerEncoderLayer(
d_model, nhead, dim_feedforward, dropout, activation,
attn_dropout, act_dropout, normalize_before,
encoder_weight_attr, encoder_bias_attr)
encoder_norm = LayerNorm(d_model)
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers,
encoder_norm)
if custom_decoder is not None:
self.decoder = custom_decoder
else:
decoder_layer = TransformerDecoderLayer(
d_model, nhead, dim_feedforward, dropout, activation,
attn_dropout, act_dropout, normalize_before,
decoder_weight_attr, decoder_bias_attr)
decoder_norm = LayerNorm(d_model)
self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers,
decoder_norm)
self.d_model = d_model
self.nhead = nhead
def forward(self, src, tgt, src_mask=None, tgt_mask=None, memory_mask=None):
r"""
Applies a Transformer model on the inputs.
Parameters:
src (Tensor): The input of Transformer encoder. It is a tensor
with shape `[batch_size, source_length, d_model]`. The data type
should be float32 or float64.
tgt (Tensor): The input of Transformer decoder. It is a tensor
with shape `[batch_size, target_length, d_model]`. The data type
should be float32 or float64.
memory (Tensor): The output of Transformer encoder. It is a tensor
with shape `[batch_size, source_length, d_model]`. The data type
should be float32 or float64.
src_mask (Tensor, optional): A tensor used in multi-head attention
to prevents attention to some unwanted positions, usually the
paddings or the subsequent positions. It is a tensor with shape
broadcasted to `[batch_size, n_head, sequence_length, sequence_length]`.
When the data type is bool, the unwanted positions have `False`
values and the others have `True` values. When the data type is
int, the unwanted positions have 0 values and the others have 1
values. When the data type is float, the unwanted positions have
`-INF` values and the others have 0 values. It can be None when
nothing wanted or needed to be prevented attention to. Default None.
tgt_mask (Tensor, optional): A tensor used in self attention
to prevents attention to some unwanted positions, usually the
the subsequent positions. It is a tensor with shape broadcasted
to `[batch_size, n_head, target_length, target_length]`. When
the data type is bool, the unwanted positions have `False`
values and the others have `True` values. When the data type is
int, the unwanted positions have 0 values and the others have 1
values. When the data type is float, the unwanted positions have
`-INF` values and the others have 0 values. It can be None when
nothing wanted or needed to be prevented attention to. Default None.
memory_mask (Tensor, optional): A tensor used in decoder-encoder
cross attention to prevents attention to some unwanted positions,
usually the paddings. It is a tensor with shape broadcasted to
`[batch_size, n_head, target_length, source_length]`. When the
data type is bool, the unwanted positions have `False` values
and the others have `True` values. When the data type is int,
the unwanted positions have 0 values and the others have 1
values. When the data type is float, the unwanted positions have
`-INF` values and the others have 0 values. It can be None when
nothing wanted or needed to be prevented attention to. Default None.
Returns:
Tensor: It is a tensor that has the same shape and data type \
as `tgt`, representing the output of Transformer decoder.
"""
src_mask = _convert_attention_mask(src_mask, src.dtype)
memory = self.encoder(src, src_mask=src_mask)
tgt_mask = _convert_attention_mask(tgt_mask, tgt.dtype)
memory_mask = _convert_attention_mask(memory_mask, memory.dtype)
output = self.decoder(tgt,
memory,
tgt_mask=tgt_mask,
memory_mask=memory_mask)
return output
def generate_square_subsequent_mask(self, length):
"""
Generate a square mask for the sequence. The mask ensures that the
predictions for position i can depend only on the known outputs at
positions less than i.
Parameters:
length (int|Tensor): The length of sequence.
Returns:
Tensor: Generated square mask according to the given length.
Examples:
.. code-block:: python
import paddle
from paddle.nn.layer.transformer import Transformer
length = 5
d_model, n_head, dim_feedforward = 8, 4, 64
transformer_paddle = Transformer(
d_model, n_head, dim_feedforward=dim_feedforward)
mask = transformer_paddle.generate_square_subsequent_mask(length)
print(mask)
# [[ 0. -inf -inf -inf -inf]
# [ 0. 0. -inf -inf -inf]
# [ 0. 0. 0. -inf -inf]
# [ 0. 0. 0. 0. -inf]
# [ 0. 0. 0. 0. 0.]]
"""
return paddle.tensor.triu(
paddle.full(shape=[length, length],
fill_value=-np.inf,
dtype=paddle.get_default_dtype()), 1)
if __name__ == "__main__":
# src: [batch_size, tgt_len, d_model]
enc_input = paddle.rand((2, 4, 128))
# tgt: [batch_size, src_len, d_model]
dec_input = paddle.rand((2, 6, 128))
# src_mask: [batch_size, n_head, src_len, src_len]
enc_self_attn_mask = paddle.rand((2, 2, 4, 4))
# tgt_mask: [batch_size, n_head, tgt_len, tgt_len]
dec_self_attn_mask = paddle.rand((2, 2, 6, 6))
# memory_mask: [batch_size, n_head, tgt_len, src_len]
cross_attn_mask = paddle.rand((2, 2, 6, 4))
# [d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward]
transformer = Transformer(128, 2, 4, 4, 512)
output = transformer(enc_input,
dec_input,
enc_self_attn_mask,
dec_self_attn_mask,
cross_attn_mask) # [2, 6, 128]
print("Transformer", output.shape)