spaCy的方法进行训练一个新的招投标实体标注模型

前言

NER标注的中文名为命名实体识别,与词性标注一样是自然
语言处理的技术基础之一。
NER标注是指对现实世界中某个对象的名称的识别,例如法
国、Donald Trump或者微信。在这些词汇中法国是一个国家,标识
为GPE(地缘整治实体), Donald Trump标识为PER(人名),微
信是一家公司,因此被标识为ORG(组织)。


项目要求:
i. 模拟实际项目的数据处理和训练整个过程;
ii. 文本数据的标注工作;
iii. 标注数据作为输入的保存形式;
iv.spaCy训练新的实体抽取模型。

导入所需要模块

from __future__ import unicode_literals, print_function

import pandas as pd
import numpy as np
import os
import plac
import random
from pathlib import Path
import spacy
from spacy.training import Example
import re

一、数据预处理

对每笔数据抽取三种实体即:中标方(bidder)、招标方(buyer)、中标金额(money);
spaCy的方法进行训练一个新的招投标实体标注模型_第1张图片

由于文本是由人工分组来标注,因此数据会比较杂乱无章,同时会有一些空格的错误导致原数据和标签数据不对应,影响后面模型训练。

因此,先将不规范的数据改为规范数据,实在整理不了的数据就进行删除处理,处理后的文件有32个文件数据,1个文件10条文本数据。

path = "C:\\Users\\11752\\Desktop\\大三下\\自然语言处理\\作业6--数据标注及其应用\\train_data\\" #文件夹目录
files= os.listdir(path) #得到文件夹下的所有文件名称

position = []
for file in files: #遍历文件夹
    position_ = path+'\\'+ file #构造绝对路径,"\\",其中一个'\'为转义符
    position.append(position_)
    print (position)

spaCy的方法进行训练一个新的招投标实体标注模型_第2张图片
将训练集:测试集=7:3划分数据。

data_train = position[:int(len(position)*0.7)]   #从数据中选取70%作为训练集,26条数据
data_test = position[-int(len(position)*0.3):]

for j in data_train:
    with open(j, "r",encoding='utf-8') as f: #打开文件
        for i in f.readlines():
            train_data.append(i)

for j in data_test:
    with open(j, "r",encoding='utf-8') as f: #打开文件
        for i in f.readlines():
            test_data.append(i)

spaCy的方法进行训练一个新的招投标实体标注模型_第3张图片
划分后训练集数据220条。注意训练集和标签数据要一一对应,因为不一一对应的话会存在一个中标方在多个数据文件中出现,导致索引错误。

将数据处理成模型所需要的格式。

import re

TRAIN_DATA = []
test = []
test1 = []
for i in range(len(train_data)):
    for j in range(len(train_label)):
        if i==j:
            try:
                out = re.finditer(train_label.iloc[j][0],train_data[i])
                for k in out:
                    test.append(tuple(list(k.span())+["BIDDER"]))
            except:
                pass
            try:
                out1 = re.finditer(train_label.iloc[j][1],train_data[i])
                for k in out1:
                    test.append(tuple(list(k.span())+["BUYER"]))
            except:
                pass
            try:
                out2 = re.finditer(train_label.iloc[j][2],train_data[i])
                for k in out2:
                    test.append(tuple(list(k.span())+["MONEY"]))
            except:
                pass
        if test != []:
            test1.append(test)
            element = (train_data[i],{'entities':test1[0]})
            TRAIN_DATA.append(element)
            test = []
            test1 = []

类似这种格式:
spaCy的方法进行训练一个新的招投标实体标注模型_第4张图片

真实数据处理后:spaCy的方法进行训练一个新的招投标实体标注模型_第5张图片

二.spaCy模型训练

对于处理好的训练集,输入到spaCy模型中进行训练,并对训练后的模型进行保存,之后调用保存的模型对测试集测试,代码如下:


def main(model=None, output_dir = None, n_iter=200):
    aa = 0
    """Load the model, set up the pipeline and train the entity recognizer."""
    if model is not None:
        nlp = spacy.load(model)  # load existing spaCy model
        print("Loaded model '%s'" % model)
    else:
        nlp = spacy.blank('zh')  # create blank Language class
        print("Created blank 'zh' model")

    # create the built-in pipeline components and add them to the pipeline
    # nlp.create_pipe works for built-ins that are registered with spaCy
    if 'ner' not in nlp.pipe_names:
        ner = nlp.create_pipe('ner')
        nlp.add_pipe('ner', last=True)
    # otherwise, get it so we can add labels
    else:
        ner = nlp.get_pipe('ner')

    # add labels
    for _, annotations in TRAIN_DATA:
        for ent in annotations.get('entities'):
            ner.add_label(ent[2])

    # get names of other pipes to disable them during training
    other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'ner']
    with nlp.disable_pipes(*other_pipes):  # only train NER
        optimizer = nlp.begin_training()
        for itn in range(n_iter):
            random.shuffle(TRAIN_DATA)
            losses = {}
            for text, annotations in TRAIN_DATA:
                try:
                    # print('第%s条数据'%aa)
                    # aa += 1
                    example = Example.from_dict(nlp.make_doc(text), annotations)##对数据进行整理成新模型需要的数据
                    # print("example:",example)
                    nlp.update(
                        [example],  # batch of annotations
                        drop=0.5,  # dropout - make it harder to memorise data
                        sgd=optimizer,  # callable to update weights
                        losses=losses)
                except:
                    pass
            print(losses)

    # save model to output directory
    if output_dir is not None:
        output_dir = Path(output_dir)
        if not output_dir.exists():
            output_dir.mkdir()
        nlp.to_disk(output_dir)
        print("Saved model to", output_dir)


if __name__ == '__main__':
    main( output_dir = "./model——ner/") ###模型保存路径

由于数据较多,迭代300次共耗费4个小时左右,误差1500左右。

三.测试集测试模型

代码如下:

import spacy

###导入训练好的模型,测试新的数据
def load_model_test(path,text):
    nlp = spacy.load(path)
    print("Loading from", path)
    doc = nlp(text)
    for i in doc.ents:
        print(i.text,i.label_)



if __name__ == "__main__":
    path = "./model——ner/"
    for i in test_data:
        load_model_test(path,i)

结果如下:
spaCy的方法进行训练一个新的招投标实体标注模型_第6张图片

根据上图测试结果来看,总体预测结果良好,能准确找出中标公司名称。

训练集模型代码

# -*- coding: utf-8 -*-
"""
Created on Mon Apr 11 21:19:12 2022

@author: He Zekai
"""
from __future__ import unicode_literals, print_function

#读取所有文档--data
import pandas as pd
import numpy as np
import os
import plac
import random
from pathlib import Path
import spacy
from spacy.training import Example
import re

path = "C:\\train_data\\" #文件夹目录
files= os.listdir(path) #得到文件夹下的所有文件名称

train_data = []
test_data = []
data_train = []
data_test = []
position = []
for file in files: #遍历文件夹
    position_ = path+'\\'+ file #构造绝对路径,"\\",其中一个'\'为转义符
    position.append(position_)
    print (position)
    
data_train = position[:int(len(position)*0.7)]   #从数据中选取70%作为训练集,26条数据
data_test = position[-int(len(position)*0.3):]

for j in data_train:
    with open(j, "r",encoding='utf-8') as f: #打开文件
        for i in f.readlines():
            train_data.append(i)

for j in data_test:
    with open(j, "r",encoding='utf-8') as f: #打开文件
        for i in f.readlines():
            test_data.append(i)
#%%读取处理后标签文档--txt

path = "C:\\data_new\\" #文件夹目录
files= os.listdir(path) #得到文件夹下的所有文件名称

txt = pd.DataFrame()  
train_label = pd.DataFrame()
test_label = pd.DataFrame()

position = []
position_train = []
position_test = []

for file in files: #遍历文件夹
    position_ = path+'\\'+ file #构造绝对路径,"\\",其中一个'\'为转义符
    position.append(position_)
    print(position)
# 划分训练集,测试集
position_train = position[:int(len(position)*0.7)]   #从数据中选取70%作为训练集,26条数据
position_test = position[-int(len(position)*0.3):]

for file in position_train:
    print(file)
    datai = pd.read_csv(file,encoding='utf8',sep=' ',error_bad_lines=False, header=None)
    datai_len = len(datai)
    train_label = train_label.append(datai)   # 添加到总的数据中


import re

TRAIN_DATA = []
test = []
test1 = []
for i in range(len(train_data)):
    for j in range(len(train_label)):
        if i==j:
            try:
                out = re.finditer(train_label.iloc[j][0],train_data[i])
                for k in out:
                    test.append(tuple(list(k.span())+["BIDDER"]))
            except:
                pass
            try:
                out1 = re.finditer(train_label.iloc[j][1],train_data[i])
                for k in out1:
                    test.append(tuple(list(k.span())+["BUYER"]))
            except:
                pass
            try:
                out2 = re.finditer(train_label.iloc[j][2],train_data[i])
                for k in out2:
                    test.append(tuple(list(k.span())+["MONEY"]))
            except:
                pass
        if test != []:
            test1.append(test)
            element = (train_data[i],{'entities':test1[0]})
            TRAIN_DATA.append(element)
            test = []
            test1 = []


def main(model=None, output_dir = None, n_iter=200):
    aa = 0
    """Load the model, set up the pipeline and train the entity recognizer."""
    if model is not None:
        nlp = spacy.load(model)  # load existing spaCy model
        print("Loaded model '%s'" % model)
    else:
        nlp = spacy.blank('zh')  # create blank Language class
        print("Created blank 'zh' model")

    # create the built-in pipeline components and add them to the pipeline
    # nlp.create_pipe works for built-ins that are registered with spaCy
    if 'ner' not in nlp.pipe_names:
        ner = nlp.create_pipe('ner')
        nlp.add_pipe('ner', last=True)
    # otherwise, get it so we can add labels
    else:
        ner = nlp.get_pipe('ner')

    # add labels
    for _, annotations in TRAIN_DATA:
        for ent in annotations.get('entities'):
            ner.add_label(ent[2])

    # get names of other pipes to disable them during training
    other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'ner']
    with nlp.disable_pipes(*other_pipes):  # only train NER
        optimizer = nlp.begin_training()
        for itn in range(n_iter):
            random.shuffle(TRAIN_DATA)
            losses = {}
            for text, annotations in TRAIN_DATA:
                try:
                    # print('第%s条数据'%aa)
                    # aa += 1
                    example = Example.from_dict(nlp.make_doc(text), annotations)##对数据进行整理成新模型需要的数据
                    # print("example:",example)
                    nlp.update(
                        [example],  # batch of annotations
                        drop=0.5,  # dropout - make it harder to memorise data
                        sgd=optimizer,  # callable to update weights
                        losses=losses)
                except:
                    pass
            print(losses)

    # save model to output directory
    if output_dir is not None:
        output_dir = Path(output_dir)
        if not output_dir.exists():
            output_dir.mkdir()
        nlp.to_disk(output_dir)
        print("Saved model to", output_dir)


if __name__ == '__main__':
    main( output_dir = "./model——ner/") ###模型保存路径



















你可能感兴趣的:(python,自然语言处理)