OpenCV第七篇:车牌识别

OpenCV第七篇:车牌识别_第1张图片

1.调整图片大小,并获取灰度图

import cv2

if __name__ == '__main__':
    img = cv2.imread('2.jpeg')
    # 调整图片大小
    img = cv2.resize(img, (620, 480))
    # 灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)




    # 显示效果
    cv2.imshow('original', img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

OpenCV第七篇:车牌识别_第2张图片

 2.双边滤波去除噪音:cv2.bilateralFilter()。

import cv2

if __name__ == '__main__':
    img = cv2.imread('2.jpeg')
    # 调整图片大小
    img = cv2.resize(img, (620, 480))
    # 灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # 双边滤波
    gray1 = cv2.bilateralFilter(gray, 13, 15, 15)

    # 显示效果
    cv2.imshow('gray', gray)
    cv2.imshow('bilateralFilter', gray1)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

OpenCV第七篇:车牌识别_第3张图片

3.边缘检测:cv2.Canny(image,threshold1,threshold2)

仅显示强度梯度大于最小阈值threshold1且小于最大阈值threshold2的边缘。

import cv2

if __name__ == '__main__':
    img = cv2.imread('2.jpeg')
    # 调整图片大小
    img = cv2.resize(img, (620, 480))
    # 灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # 双边滤波
    gray = cv2.bilateralFilter(gray, 13, 15, 15)
    # 边缘检测
    edged = cv2.Canny(gray, 30, 200)




    # 显示效果
    cv2.imshow('gray', gray)
    cv2.imshow('edged', edged)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

OpenCV第七篇:车牌识别_第4张图片

4.寻找轮廓:车牌(四边形)

pip install imutils
import cv2
import imutils

if __name__ == '__main__':
    img = cv2.imread('2.jpeg')
    # 调整图片大小
    img = cv2.resize(img, (620, 480))
    # 灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # 双边滤波
    gray = cv2.bilateralFilter(gray, 13, 15, 15)
    # 边缘检测
    edged = cv2.Canny(gray, 30, 200)


    # 寻找轮廓(图像矩阵,输出模式,近似方法)
    contours = cv2.findContours(edged.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    # 配合上面一句使用:用来兼容cv2和cv3
    contours = imutils.grab_contours(contours)
    # 根据区域大小排序取前十个
    contours = sorted(contours, key=cv2.contourArea, reverse=True)[:10]
    screenCnt = None
    # 遍历轮廓,找到车牌轮廓
    for c in contours:
        # 计算轮廓周长(轮廓,是否闭合)
        peri = cv2.arcLength(c, True)
        # 折线化(轮廓,阈值(越小越接近曲线),是否闭合)返回折线顶点坐标
        approx = cv2.approxPolyDP(c, 0.018 * peri, True)
        # 获取四个顶点(即四边形)
        if len(approx) == 4:
            screenCnt = approx
            break
    # 如果找到了四边形
    if screenCnt is not None:
        # 根据四个顶点坐标对img画线(图像矩阵,轮廓坐标集,轮廓索引,颜色,线条粗细)
        cv2.drawContours(img, [screenCnt], -1, (0, 0, 255), 3)



    # 显示效果
    cv2.imshow('img', img)
    cv2.imshow('gray', gray)
    cv2.imshow('edged', edged)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

OpenCV第七篇:车牌识别_第5张图片 5.图像位运算进行遮罩

import cv2
import imutils
import numpy as np

if __name__ == '__main__':
    img = cv2.imread('2.jpeg')
    # 调整图片大小
    img = cv2.resize(img, (620, 480))
    # 灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # 双边滤波
    gray = cv2.bilateralFilter(gray, 13, 15, 15)
    # 边缘检测
    edged = cv2.Canny(gray, 30, 200)

    """寻找轮廓(图像矩阵,输出模式,近似方法)"""
    contours = cv2.findContours(edged.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    # 配合上面一句使用:用来兼容cv2和cv3
    contours = imutils.grab_contours(contours)
    # 根据区域大小排序取前十个
    contours = sorted(contours, key=cv2.contourArea, reverse=True)[:10]
    screenCnt = None
    # 遍历轮廓,找到车牌轮廓
    for c in contours:
        # 计算轮廓周长(轮廓,是否闭合)
        peri = cv2.arcLength(c, True)
        # 折线化(轮廓,阈值(越小越接近曲线),是否闭合)返回折线顶点坐标
        approx = cv2.approxPolyDP(c, 0.018 * peri, True)
        # 获取四个顶点(即四边形)
        if len(approx) == 4:
            screenCnt = approx
            break
    # 如果找到了四边形
    if screenCnt is not None:
        # 根据四个顶点坐标对img画线(图像矩阵,轮廓坐标集,轮廓索引,颜色,线条粗细)
        cv2.drawContours(img, [screenCnt], -1, (0, 0, 255), 3)

    """遮罩"""
    # 创建一个灰度图一样大小的图像矩阵
    mask = np.zeros(gray.shape, np.uint8)
    # 将创建的图像矩阵的车牌区域画成白色
    cv2.drawContours(mask, [screenCnt], 0, 255, -1, )
    # 图像位运算进行遮罩
    new_image = cv2.bitwise_and(img, img, mask=mask)


    # 显示效果
    cv2.imshow('img', img)
    cv2.imshow('gray', gray)
    cv2.imshow('edged', edged)
    cv2.imshow('new_image', new_image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

OpenCV第七篇:车牌识别_第6张图片

6.图像剪裁

import cv2
import imutils
import numpy as np

if __name__ == '__main__':
    img = cv2.imread('2.jpeg')
    # 调整图片大小
    img = cv2.resize(img, (620, 480))
    # 灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # 双边滤波
    gray = cv2.bilateralFilter(gray, 13, 15, 15)
    # 边缘检测
    edged = cv2.Canny(gray, 30, 200)

    """寻找轮廓(图像矩阵,输出模式,近似方法)"""
    contours = cv2.findContours(edged.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    # 配合上面一句使用:用来兼容cv2和cv3
    contours = imutils.grab_contours(contours)
    # 根据区域大小排序取前十个
    contours = sorted(contours, key=cv2.contourArea, reverse=True)[:10]
    screenCnt = None
    # 遍历轮廓,找到车牌轮廓
    for c in contours:
        # 计算轮廓周长(轮廓,是否闭合)
        peri = cv2.arcLength(c, True)
        # 折线化(轮廓,阈值(越小越接近曲线),是否闭合)返回折线顶点坐标
        approx = cv2.approxPolyDP(c, 0.018 * peri, True)
        # 获取四个顶点(即四边形)
        if len(approx) == 4:
            screenCnt = approx
            break
    # 如果找到了四边形
    if screenCnt is not None:
        # 根据四个顶点坐标对img画线(图像矩阵,轮廓坐标集,轮廓索引,颜色,线条粗细)
        cv2.drawContours(img, [screenCnt], -1, (0, 0, 255), 3)

    """遮罩"""
    # 创建一个灰度图一样大小的图像矩阵
    mask = np.zeros(gray.shape, np.uint8)
    # 将创建的图像矩阵的车牌区域画成白色
    cv2.drawContours(mask, [screenCnt], 0, 255, -1, )
    # 图像位运算进行遮罩
    new_image = cv2.bitwise_and(img, img, mask=mask)

    """图像剪裁"""
    # 获取车牌区域的所有坐标点
    (x, y) = np.where(mask == 255)
    # 获取底部顶点坐标
    (topx, topy) = (np.min(x), np.min(y))
    # 获取底部坐标
    (bottomx, bottomy,) = (np.max(x), np.max(y))
    # 剪裁
    Cropped = gray[topx:bottomx, topy:bottomy]

    # 显示效果
    cv2.imshow('img', img)
    cv2.imshow('gray', gray)
    cv2.imshow('edged', edged)
    cv2.imshow('Cropped', Cropped)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

7.字符识别:OCR

import cv2
import imutils
import numpy as np

if __name__ == '__main__':
    img = cv2.imread('2.jpeg')
    # 调整图片大小
    img = cv2.resize(img, (620, 480))
    # 灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # 双边滤波
    gray = cv2.bilateralFilter(gray, 13, 15, 15)
    # 边缘检测
    edged = cv2.Canny(gray, 30, 200)

    """寻找轮廓(图像矩阵,输出模式,近似方法)"""
    contours = cv2.findContours(edged.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    # 配合上面一句使用:用来兼容cv2和cv3
    contours = imutils.grab_contours(contours)
    # 根据区域大小排序取前十个
    contours = sorted(contours, key=cv2.contourArea, reverse=True)[:10]
    screenCnt = None
    # 遍历轮廓,找到车牌轮廓
    for c in contours:
        # 计算轮廓周长(轮廓,是否闭合)
        peri = cv2.arcLength(c, True)
        # 折线化(轮廓,阈值(越小越接近曲线),是否闭合)返回折线顶点坐标
        approx = cv2.approxPolyDP(c, 0.018 * peri, True)
        # 获取四个顶点(即四边形)
        if len(approx) == 4:
            screenCnt = approx
            break
    # 如果找到了四边形
    if screenCnt is not None:
        # 根据四个顶点坐标对img画线(图像矩阵,轮廓坐标集,轮廓索引,颜色,线条粗细)
        cv2.drawContours(img, [screenCnt], -1, (0, 0, 255), 3)

    """遮罩"""
    # 创建一个灰度图一样大小的图像矩阵
    mask = np.zeros(gray.shape, np.uint8)
    # 将创建的图像矩阵的车牌区域画成白色
    cv2.drawContours(mask, [screenCnt], 0, 255, -1, )
    # 图像位运算进行遮罩
    new_image = cv2.bitwise_and(img, img, mask=mask)

    """图像剪裁"""
    # 获取车牌区域的所有坐标点
    (x, y) = np.where(mask == 255)
    # 获取底部顶点坐标
    (topx, topy) = (np.min(x), np.min(y))
    # 获取底部坐标
    (bottomx, bottomy,) = (np.max(x), np.max(y))
    # 剪裁
    Cropped = gray[topx:bottomx, topy:bottomy]

    """OCR识别"""
    text = pytesseract.image_to_string(Cropped, config='--psm 11')
    print("车牌结果:", text)

    # 显示效果
    cv2.imshow('img', img)
    cv2.imshow('gray', gray)
    cv2.imshow('edged', edged)
    cv2.imshow('new_image', Cropped)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

OpenCV第七篇:车牌识别_第7张图片  

你可能感兴趣的:(OpenCV,opencv,计算机视觉,人工智能,车牌识别)