基于MATLAB的无线传感器网络定位测量仿真

%|
%| SCRIPT:  simMLE
%|
%| PURPOSE:  Simulate a relative location system by generating
%|    random measurements and maximizing the likelihood fcn.
%|    After many trials, show the results vs. the Cramer-Rao Bound.
%|
%| AUTHOR:  Neal Patwari 
%|   http://www.engin.umich.edu/~npatwari/
%| 
%| REFERENCE: Relative Location Estimation in Wireless Sensor Networks 
%|   (N. Patwari, A. O. Hero, M. Perkins, N. S. Correal, R. J. O'Dea), 
%|   IEEE Trans. Signal Processing, vol. 51, no. 8, Aug. 2003, pp. 2137-2148. 
%|
tic

% Use globals to allow minimization functions access to network info,
% debugging info.
global refDevices blindDevices totalDevices linearRefLocs dhat funcEvals dfuncEvals;

% Basic simulation parameters
roomSize        = [1,1];       % Room size, meters
gridSize        = 5;           % How many sensors per side
refDevices      = 4;           % How many references (must be same length as actualRefLocs)
trials          = 20;          % How many indep trials to run
measMethod      = 'R';         % Use 'R' for RSS, 'T' for TOA
totalDevices    = gridSize^2;
blindDevices    = totalDevices - refDevices;
blindCoords     = 2*blindDevices;
actualRefLocs   = [0,0; 0,1; 1,1; 1,0];
linearRefLocs   = [actualRefLocs(:,1)', actualRefLocs(:,2)'];

% Optimization parameters
ftol  = 0.00001;
if measMethod == 'R',
    func  = 'calcError';       % Use for RSS
    dfunc = 'calcDError';      % Use for RSS
else
    func  = 'calcErrorTOA';    % Use for TOA
    dfunc = 'calcDErrorTOA';   % Use for TOA
end


%| 1. Set up the blindfolded device locations
delta    = 1/(gridSize-1);
coords   = 0:delta:1;
xMatrix  = ones(gridSize,1)*coords;
yMatrix  = xMatrix';
xBlind   = [xMatrix(2:gridSize-1), ...
        xMatrix(gridSize+1:totalDevices-gridSize), ...
        xMatrix(totalDevices-gridSize+2:totalDevices-1)];
yBlind   = [yMatrix(2:gridSize-1), ...
        yMatrix(gridSize+1:totalDevices-gridSize), ...
        yMatrix(totalDevices-gridSize+2:totalDevices-1)];
actualBlindLocs = [xBlind', yBlind'];
actualAllLocs   = [actualRefLocs; actualBlindLocs];
xActual         = actualAllLocs(:,1)';
yActual         = actualAllLocs(:,2)';
actualDist      = L2_distance(actualAllLocs', actualAllLocs',0);

%| 2.  Define the channel model
if measMethod == 'R';
    sigmaOverN = 1.7;                            
    % If C==1, then this simulation runs the _true_ MLE.
    % If C==exp( 0.5* (log(10)/10 *sigmaOverN)^2), then this runs a
    %   bias-corrected (pseudo-) MLE.
    % C = exp( 0.5* (log(10)/10 *sigmaOverN)^2);   
    C = 1;
else
    sigma_d = 0.2;                               % Use for TOA
end

for trial = 1:trials,
    
    
    if measMethod == 'R';
        %| 3.0 Generate a random set of RSS-based distance measurements.  When RSS 
        %|     is expressed in dB,  errors are Gaussian.  Here, dhat is an interim 
        %|     variable which has units of distance, and represents an estimate for 
        %|     the range.  It is correctly randomly generated as follows:
        dhat  = actualDist.*10.^(sigmaOverN/10 .*symrandn(totalDevices))./C;
    else
        %| 3.1 Generate a set of TOA measurements, which are Gaussian around the
        %|     true value with variance sigma_d.
        dhat  = actualDist + sigma_d .* symrandn(totalDevices);
    end
    
    %| 4.  Make an initial guess of the coordinates.
    blindLocs0 = [xBlind, yBlind]; % Use the true coordinates (unrealistic but best case)
    
    %| 5.  Find optimum locations of neurfons (fixed and relative)
    funcEvals = 0;  dfuncEvals = 0;
    [coordsMLE, iter, errorMin] = frprmn(blindLocs0, ftol, func, dfunc, 0);
    disp(sprintf('%d: Function / Deriv. evals: %d / %d.', trial, funcEvals, dfuncEvals));
    
    %| 6.  Save the resulting estimated coords
    coordEsts(trial, 1:blindCoords) = coordsMLE;
end % for trial

estMean = mean(coordEsts);
estCov  = cov(coordEsts);
estVars = diag(estCov);
estStds = sqrt(estVars);
locVars = estVars(1:blindDevices) + estVars((blindDevices+1):(2*blindDevices));
locStd  = sqrt(locVars);

toc  % show time of execution

% Plot the location estimates for sensors, one at a time.
if 0,
    figure
    for i=1:blindDevices,
        clf
        plot(coordEsts(:,i), coordEsts(:,blindDevices+i),'.', ...
            estMean(i), estMean(blindDevices+i), 'ro')
        hold on
        set(gca,'xlim',[-0.2 1.2])
        set(gca,'ylim',[-0.2 1.2])
        set(gca,'FontSize',20)
        set(gca,'DataAspectRatio',[1 1 1])
        xlabel('X Position (m)')
        ylabel('Y Position (m)')
        set(gca,'xTick',0:0.25:1)
        set(gca,'yTick',0:0.25:1)
        grid;
        pause;
    end
end


% Calculate and plot CRB vs. estimator performance.  
figure; clf;
if measMethod == 'R';
    [locstdCRB, coordCRB] = calcLocalizationCRB('R', [xBlind, actualRefLocs(:,1)'], ...
       [yBlind, actualRefLocs(:,2)'], blindDevices, totalDevices, sigmaOverN);
else
    [locstdCRB, coordCRB] = calcLocalizationCRB('T', [xBlind, actualRefLocs(:,1)'], ...
       [yBlind, actualRefLocs(:,2)'], blindDevices, totalDevices, sigma_d);
end
for i=1:blindDevices,
    hold on
    R = cov(coordEsts(:,i), coordEsts(:,blindDevices+i));
    drawOval(estMean(i), estMean(blindDevices+i), R, 'k-','v', 8, 0, 1);
    R_CRB = coordCRB([i, i+blindDevices],[i, i+blindDevices]);
    drawOval(xBlind(i), yBlind(i), R_CRB, 'r--','.',20, 0, 1);
end
set(gca,'xlim',[-0.2 1.2])
set(gca,'ylim',[-0.2 1.2])
set(gca,'FontSize',18)
set(gca,'DataAspectRatio',[1 1 1])
xlabel('X Position (m)')
ylabel('Y Position (m)')
set(gca,'xTick',0:0.25:1)
set(gca,'yTick',0:0.25:1)
grid;

% Use for comparison
RMS_est_Std = sqrt(mean(locStd.^2))
RMS_crb_Std = sqrt(mean(locstdCRB.^2))
基于MATLAB的无线传感器网络定位测量仿真_第1张图片

D150

你可能感兴趣的:(MATLAB,板块9:二维三维空间定位,网络,matlab,p2p,无线传感器网络定位)