李宏毅机器学习特训营机器学习作业4-语句分类

目录

  • 项目描述
    • 数据集介绍
    • 项目要求
    • 环境配置/安装
  • 编码
    • 1-of-N encoding
    • Bag of Words (BOW)
    • word embedding
  • 文本数据预处理
  • Word2Vec
  • 定义数据读取器
  • 定义模型
  • 半监督学习
  • 训练
  • 预测测试集
  • 修改
  • 总结

项目描述

  • 本次作业是要让同学接触自然语言处理当中一个简单的任务 —— 语句分类(文本分类)
  • 给定一个语句,判断他有没有恶意(负面标 1,正面标 0)

数据集介绍

有三个文件,分别是 training_label.txt、training_nolabel.txt、testing_data.txt

  • training_label.txt:有标签的训练数据(句子配上 0 or 1,+++$+++ 只是分隔符号,不要理它)

    • e.g., 1 +++$+++ are wtf … awww thanks !
  • training_nolabel.txt:没有标签的训练数据(只有句子),用来做半监督学习

    • ex: hates being this burnt !! ouch
  • testing_data.txt:你要判断测试数据里面的句子是 0 or 1

    id,text

    0,my dog ate our dinner . no , seriously … he ate it .

    1,omg last day sooon n of primary noooooo x im gona be swimming out of school wif the amount of tears am gona cry

    2,stupid boys … they ’ re so … stupid !

项目要求

  • 用一些方法 pretrain 出 word embedding (e.g., skip-gram, CBOW. )
  • 请使用 RNN 实现文本分类
  • 不能使用额外 data (禁止使用其他 corpus 或 pretrained model)

环境配置/安装

作业基于paddle2.0

pip install gensim==3.8.3
path_prefix = "./"
pip install -U numpy

import numpy
numpy.__version__

'1.20.2'

先看一下文本数据。

带有标签的文本数据:
李宏毅机器学习特训营机器学习作业4-语句分类_第1张图片

不带有标签的文本数据:
李宏毅机器学习特训营机器学习作业4-语句分类_第2张图片

编码

计算机要分析一句话的情感,前提是计算机要能“认识”单词,这就需要把单词转为能够被计算机处理的数据。单词的表示方法有下面几种:

1-of-N encoding

也叫one-hot编码,中文翻译过来就是“独热编码”。

这里用training_ label.txt里面的一个句子:are wtf … awww thanks ! → are wtf awww thanks (去掉标点符号)

编码后就成了 a1:[1,0,0,0] are

a2:[0,1,0,0] wtf
a3:[0,0,1,0] awww
a4:[0,0,0,1] thanks (当然编码的顺序也可以变)

Bag of Words (BOW)

词袋。BOW 的概念就是将句子里的文字变成一个袋子装着这些词,BOW不考虑文法以及词的顺序。很形象的说明了一个袋子里有很多单词。

这里用training_ label.txt里面的句子: i feel icky i need a hug. 然后袋子里有单词[“i”,“feel”,“icky”,“need”,“a”,“hug”]

上面的句子的表示向量就是[2,1,1,1,1,1],含义就是"i"在句子中出现了2次,"feel"在句子中出现了1次等等

再比如一个句子i feel icky. 表示向量就是[1,1,1,0,0,0] 0就表示袋子里的单词没出现在句子里。

word embedding

词嵌入。也叫词的向量化(word to vector),即把单词变成向量(vector)。这也是作业要求的:用一些方法 pretrain 出 word embedding (e.g., skip-gram, CBOW. )

在1-of-N encoding中,表示一个单词are是[1,0,0,0],如果一个单词经过1-of-N encoding是1000维,其实是很浪费空间的,还有就是1-of-N encoding相当于简单的给每个单词编了个号,但是单词和单词之间的关系则完全体现不出来。这时候word embedding的优势就体现出来了。

word embedding可以简单地理解为:经过某种变换处理,为单词分配一个维度比较低的向量,这个向量可以丢进模型中处理。同时,向量与向量之间可能还有一些相似性,比如father和mother这两个单词的向量在空间中会比较相近,而father和pencil这两个单词的向量在空间中就会离得比较远。

安装的gensim就是常用的一个NLP工具包,其中的word2vec模块可以把单词转为向量。把很多单词转为向量后,就可以得到一个word embedding矩阵。比如:

are [0.3,0.5,0.6]
wtf [0.9,0.8,0.6]
awww [0.1,0.2,0.3]
thanks [0.8,0.7,0.6]

如果有10000个单词,每个单词分配的向量是20维,那么word embedding矩阵就是10000 20的矩阵。*

文本数据预处理

一,读取文件,这里可以用正则表达式把标点符号都去掉,然后把英文都转为小写;

比如:

import re
x=["are wtf ... awww thanks !","i know eep ! i can ' t wait for one more day ...."]
x = [re.sub(r"([.!?,'])", r"", s) for s in x]
x = [' '.join(s.split()) for s in x]
x = [s.split() for s in x]
x

[['are', 'wtf', 'awww', 'thanks'],
 ['i', 'know', 'eep', 'i', 'can', 't', 'wait', 'for', 'one', 'more', 'day']]

二,word embedding。利用gensim中的word2vec模块可以把单词转为向量。

import re
import paddle
import numpy as np

def load_training_data(path='work/data/training_label.txt'):
    # 读取 training 需要的数据
    # 如果是 'training_label.txt',需要读取 label,如果是 'training_nolabel.txt',不需要读取 label
    if 'training_label' in path:
        with open(path, 'r') as f:
            lines = f.readlines()
            lines = [line.strip('\n') for line in lines]
        x = [line[10:] for line in lines]  #1 +++$+++ are wtf ... awww thanks !  从are开始往后读取
        x = [re.sub(r"([.!?,'])", r"", s) for s in x]
        x = [' '.join(s.split()) for s in x]
        x = [s.split() for s in x]
        # 每行按空格分割后,第0个符号是label
        y = [line[0] for line in lines]
        return x, y
    else:
        with open(path, 'r') as f:
            lines = f.readlines()
            x = [line.strip('\n') for line in lines]
            x = [re.sub(r"([.!?,'])", r"", s) for s in x]
            x = [' '.join(s.split()) for s in x]
            x = [s.split() for s in x]
        return x

def load_testing_data(path='work/data/testing_data.txt'):
    # 读取 testing 需要的数据
    with open(path, 'r') as f:
        lines = f.readlines()
        # 第0行是表头id,tex,从第1行开始才是要读取的数据
        # 第0列是id,第1列是文本,按逗号分割,需要逗号之后的文本
        X = [line.strip('\n') for line in lines[2:]]
        #X = ["".join(line.strip('\n').split(",")[1:]).strip() for line in lines[1:]]
        X = [re.sub(r"([.!?,'])", r"", s) for s in X]
        X = [' '.join(s.split()) for s in X]
        X = [s.split() for s in X]
    return X
# 读取 训练 数据
print("加载训练数据 ...")
train_x, y = load_training_data('work/data/training_label.txt')
train_x_no_label = load_training_data('work/data/training_nolabel.txt')

# 读取测试数据
print("加载测试数据 ...")
test_x = load_testing_data('work/data/testing_data.txt')
print("完成。")
#查看加载好的数据
print(train_x[0],y[0])
print(train_x_no_label[1])
print(test_x[0])

打印:
在这里插入图片描述

Word2Vec

把上面读取出来的单词转为向量,用word2vec 模块,具体 API 如下:

class gensim.models.word2vec.Word2Vec( sentences=None, size=100, alpha=0.025, window=5, min_count=5,
max_vocab_size=None,
sample=0.001,
seed=1,
workers=3,
min_alpha=0.0001,
sg=0,
hs=0,
negative=5,
cbow_mean=1,
hashfxn=,
iter=5,
null_word=0,
trim_rule=None,
sorted_vocab=1,
batch_words=10000,
compute_loss=False)

size就是词向量的维度。主要需要设置的就是size,min_count:过滤掉语料中出现频率小于min_count的词。其他都可以按默认的来。

from gensim.models.word2vec import Word2Vec

def train_word2vec(x):
    # 训练 word to vector 的 word embedding
    model = Word2Vec(x, size=250, window=5, min_count=5, workers=12, iter=10, sg=1)
    return model

# 把所有文本数据中的单词变成 向量
model = train_word2vec(train_x + train_x_no_label + test_x)
# 保存
model.save('w2v_all.model')

训练好的word embedding矩阵,可以通过Word2Vec.load()得到

想获取一个单词的词向量,可以通过embedding[‘dog’]获得。

embedding = Word2Vec.load('w2v_all.model')
embedding_dim = embedding.vector_size  #词向量维度 250
print(embedding['dog'])
print(embedding_dim) 
#可以查看一共有多少个单词
len(embedding.wv.vocab)

拿到word embedding矩阵后,需要考虑如何用到模型中去。就比如有一组单词[‘are’, ‘wtf’, ‘awww’, ‘thanks’],可以通过word embedding矩阵查到得到对应的词向量,组成一个4* 250的矩阵,然后把矩阵送到模型中。但是通过embedding[‘are’]的方式获取词向量是很麻烦的。

这里需要用paddle的一个函数,paddle.nn.Embedding(num_embeddings, embedding_dim, padding_idx=None, sparse=False, weight_attr=None, name=None)

嵌入层(Embedding Layer)
该接口用于构建 Embedding 的一个可调用对象 。其根据input中的id信息从embedding矩阵中查询对应embedding信息,并会根据输入的size (num_embeddings, embedding_dim)和weight_attr自动构造一个二维embedding矩阵。

这里先把构造方法给出来embedding=paddle.nn.Embedding(embedding.shape[0],embedding.shape[1],weight_attr=paddle.framework.ParamAttr(initializer=paddle.nn.initializer.Assign(embedding)))

这句代码的意思就是构造了一个embedding层,层的参数初始化为word embedding矩阵中的向量的值。当一个输入进来后,会根据输入矩阵中的值(单词的序号)查找对应词向量,如下图所示:
李宏毅机器学习特训营机器学习作业4-语句分类_第3张图片
现在明白了embedding层可以通过inputs输入中的值,找到对应的词向量。

现在就把一组单词变成一组序号;比如[‘are’, ‘wtf’, ‘awww’, ‘thanks’] → [1,2,3,4]

序号又怎么来?就是通过查找一个单词在词袋中的位置。比如有词袋:

[‘are’, ‘wtf’, ‘awww’, ‘thanks’,‘to’, ‘find’, ‘out’, ‘that’, ‘the’, ‘ending’, ‘sucks’]

那么单词’are’的序号就是1,wtf的序号就是2。。。。。。

下面就要有一个数据预处理类:类中有能把一个句子中的单词转为词袋中的序号的函数,def sentence_word2id(self):

函数def make_embedding():获取训练好的word embedding矩阵

为方便模型的进行批处理,所以需要把长度不一的句子调整为相同长度的。

定义数据读取器

# 数据预处理
class Preprocess():
    def __init__(self,sen_len, w2v_path):
        self.w2v_path = w2v_path   # word2vec的存储路径
        self.sen_len = sen_len    # 句子的固定长度,方便模型进行批处理
        self.BagofWords = []      #保存获取到的所有单词(单词不重复),词袋
        self.dic_word2id = {}        # 比如{"dog":0,"hug":1},字典中的key为单词,value为对应的序号
        self.embedding_matrix = []  #用于保存之前训练得到的词向量矩阵

    def get_w2v_model(self):
        # 读取之前训练好的 word2vec 
        self.embedding = Word2Vec.load(self.w2v_path)
        self.embedding_dim = self.embedding.vector_size  #获取词向量维度

    def add_embedding(self, word):
        # 这里的 word 只会是 "" 或 ""  是空白符,是未知单词符号
        # 把一个随机生成的向量作为 "" 或 "" 的词向量
        vector = paddle.uniform(shape=[1,self.embedding_dim]) 
        # 它的 序号id 是 dic_word2id 这个词典的长度,即最后一个
        self.dic_word2id[word] = len(self.dic_word2id)
        self.BagofWords.append(word)
        self.embedding_matrix = paddle.concat([self.embedding_matrix, vector], 0)

    def make_embedding(self, load=True):
        # 获取训练好的 Word2vec word embedding
        if load:
            print("加载word embedding矩阵 ...")
            self.get_w2v_model()
            print("加载完成。")
        else:
            raise NotImplementedError
        # 遍历嵌入后的单词
        for i, word in enumerate(self.embedding.wv.vocab):
            print('单词数量:#{}'.format(i+1), end='\r')
            # 新加入的 单词 的索引号是 dic_word2id 这个词典的长度,即最后一个
            self.dic_word2id[word] = len(self.dic_word2id)
            self.BagofWords.append(word)
            self.embedding_matrix.append(self.embedding[word])
        print('')
        # 把 embedding_matrix 变成 tensor,因为要用于设置embedding层参数
        self.embedding_matrix = paddle.to_tensor(self.embedding_matrix)
        # 将  加入 embedding 
        self.add_embedding("")
        self.add_embedding("")
        print("单词总数量: {}".format(len(self.embedding_matrix)))
        return self.embedding_matrix

    def pad_sequence(self, sentence):
        # 将每个句子变成一样的长度,即 sen_len 的长度
        if len(sentence) > self.sen_len:
        # 如果句子长度大于 sen_len 的长度,就截断
            sentence = sentence[:self.sen_len]
        else:
        # 如果句子长度小于 sen_len 的长度,就补上  符号,缺多少个单词就补多少个  
            pad_len = self.sen_len - len(sentence)
            for _ in range(pad_len):
                sentence.append(self.dic_word2id[""])
        assert len(sentence) == self.sen_len
        return sentence

    def sentence_word2id(self,sentences):
        # 把句子里面的单词变成相对应的序号
        sentence_list = []
        for i, sen in enumerate(sentences):
            print('句子数量 #{}'.format(i+1), end='\r')
            sentence_idx = []
            for word in sen:
                if (word in self.dic_word2id.keys()):
                    sentence_idx.append(self.dic_word2id[word])
                else:
                # 没有出现过的单词就用  表示
                    sentence_idx.append(self.dic_word2id[""])
            # 将每个句子变成一样的长度,方便批量处理
            sentence_idx = self.pad_sequence(sentence_idx)
            sentence_list.append(sentence_idx)
        return sentence_list
#定义数据读取器
from paddle.io import Dataset,DataLoader

class Reader(Dataset):
    def __init__(self, datas, labels):
        self.data = datas
        self.label = labels
    def __getitem__(self, idx):
        if self.label is None:
            return np.array(self.data[idx])
        else:
            return np.array(self.data[idx]), np.array(self.label[idx],dtype='float32') #dtype='float32'是因为paddle.nn.BCELoss()需要input数据类型是float32、float64。
    def __len__(self):
        return len(self.data)

定义模型

from paddle import nn

class LSTM_Net(nn.Layer):
    def __init__(self, embedding, embedding_dim, hidden_dim, num_layers, dropout=0.5):  #, fix_embedding=True
        super(LSTM_Net, self).__init__()
        # embedding layer
        self.embedding = paddle.nn.Embedding(embedding.shape[0],embedding.shape[1],weight_attr=paddle.framework.ParamAttr(initializer=paddle.nn.initializer.Assign(embedding)))
        self.embedding_dim = embedding.shape[1]
        self.hidden_dim = hidden_dim
        self.num_layers = num_layers
        self.dropout = dropout
        self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers=num_layers)
        self.classifier = nn.Sequential( 
        		nn.Dropout(dropout),
                nn.Linear(hidden_dim, 1),
                nn.Sigmoid() 
         )
        
    def forward(self, inputs):
        inputs = self.embedding(inputs)
        x, _ = self.lstm(inputs, None)
        # 取用 LSTM 最后一层的 hidden state 丢到分类器中
        x = x[:, -1, :] 
        x = self.classifier(x)
        return x

半监督学习

利用没有标签的文本数据进行半监督学习,比如说:在验证过程中,对一句文本进行情感分类预测,得到概率值为0.98,假设这时预测为标签1,其实这种预测的可信度还是挺高了,那就把这个文本数据和预测的标签添加到训练集中去;同理,如果概率值为0.02,这时预测为标签0,同样也把文本数据和标签添加到训练集中去。训练集的数据会越来越多,样本越多,对于模型训练是好事。

#函数用于打标签(大于0.99的,标签为1,小于0.01的标签为0)
#此时的outputs是张量!
#负面标 1,正面标 0
def make_tag(outputs):
    outputs = outputs.numpy()
    outputs = outputs.reshape((1,-1))    
    outputs[outputs>=0.99] = 1 
    outputs[outputs<=0.01] = 0
    index = np.argwhere([outputs==1,outputs==0])
    index = index[:,-1]
    return outputs,index
#计算模型预测的准确率
def evaluation(outputs, labels):
    # outputs => 预测值,概率(float)
    # labels => 真实值,标签(0或1)
    # 负面标 1,正面标 0
    outputs = outputs.reshape((1,-1))
    labels = labels.reshape((1,-1))
    outputs = paddle.round(outputs)
    accuracy = outputs.shape[1]-paddle.sum(paddle.abs(outputs-labels))
    return accuracy
def training(batchSize, epochs, learningRate, data_train, lable_train,val_loader, data_train_no_label, model,start_selftraining=18):  
    v_batch = len(val_loader)  # validation 数据的batch size大小
    loss = nn.BCELoss() # 定义损失函数为二元交叉熵损失 binary cross entropy loss
    #lable_train = np.array(lable_train)
    optimizer = paddle.optimizer.Adam(learning_rate=learningRate,parameters=model.parameters()) # optimizer用Adam
    total_loss, total_acc, best_acc = 0, 0, 0
    for epoch in range(epochs):
        print('训练集大小:{}'.format(len(data_train)))
        train_dataset = Reader(datas=data_train, labels=lable_train)  #因为是半监督学习,所以训练集数据会增加,每个epoch都需要重新实例化数据读取器
        train_loader = DataLoader(train_dataset, batch_size = batchSize, shuffle = True) 
        total_loss, total_acc = 0, 0

        # 训练
        model.train() #train模式
        for i, (inputs, labels) in enumerate(train_loader):			
            optimizer.clear_grad() # 由于 loss.backward() 的 gradient 会累加,所以每一个 batch 后需要归零
            outputs = model(inputs) # 模型输入Input,输出output
            outputs = outputs.squeeze() # 删除等于1的维度
            batch_loss = loss(outputs, labels) # 计算模型此时的 training loss
            batch_loss.backward() # 计算 loss 的 gradient
            optimizer.step() # 更新模型参数
			
            accuracy = evaluation(outputs, labels) # 计算模型此时的训练准确率
            total_acc += (accuracy / batchSize)
            total_loss += batch_loss.numpy()[0]   #从张量转为numpy
        print('Epoch | {}/{}'.format(epoch+1,epochs))
        n_batch = len(train_loader) #获取数据共有几个批次(batch)
        print('训练集 | Loss:{:.5f} Acc: {:.3f}'.format(total_loss/n_batch, total_acc.numpy()[0]/n_batch*100))

        #self training
        model.eval() # 将 model 的模式设为 eval
        if epoch >= start_selftraining :
            temp_data = data_train_no_label
            train_no_label_dataset = Reader(datas=temp_data, labels=None)
            train_no_label_loader = DataLoader(train_no_label_dataset, batch_size = batchSize, shuffle = True)
            print("self training...")
            print("总批次:{}".format(len(train_no_label_loader)))
            with paddle.no_grad():
                for ii, (inputs) in enumerate(train_no_label_loader):
                    print('Batch | {}/{}'.format(ii+1,len(train_no_label_loader)), end='\r')
                    inp = inputs[0]
                    outputs = model(inp)
                    outputs = outputs.squeeze() # 删除等于1的维度
                    #给无标签文本打上标签
                    labels_tag,index = make_tag(outputs= outputs)
                    # index = index.tolist()
                    # 加入新标注的数据
                    for iii in index:
                        data_train.append(inp[int(iii)].numpy().tolist())
                        lable_train.append(labels_tag[0][iii])
                    if ii == 0:
                        data_train_no_label = np.delete(inp.numpy(), index, 0).tolist()
                    else:
                        data_train_no_label.extend(np.delete(inp.numpy(), index, 0).tolist())
            print("self training finished!")
		
        # 验证
        with paddle.no_grad():
            total_loss, total_acc = 0, 0				
            for i, (inputs, labels) in enumerate(val_loader):				
                outputs = model(inputs) # 模型输入Input,输出output
                outputs = outputs.squeeze()                
                batch_loss = loss(outputs, labels) # 计算模型此时的 training loss
                accuracy = evaluation(outputs, labels) # 计算模型此时的 training accuracy
                total_acc += (accuracy / batchSize)
                total_loss += batch_loss.numpy()[0]
            print("验证集 | Loss:{:.5f} Acc: {:.3f} ".format(total_loss/v_batch, total_acc.numpy()[0]/v_batch*100))
            if total_acc > best_acc:
                # 如果验证集的准确率优于之前所有的准确率,就把当下的模型保存下来,用于之后的testing
                best_acc = total_acc
                paddle.save(model.state_dict(), "model.pdparams")
        print('-----------------------------------------------')
from sklearn.model_selection import train_test_split

# 定义句子长度、要训练几个 epoch、 学习率的值、 w2v的路径
sen_len = 20
batchsize = 128
epoch = 50
lr = 0.000125
w2v_path = 'w2v_all.model' 

print("加载文本数据 ...") # 读取 'training_label.txt'  'training_nolabel.txt' 
train_x, y = load_training_data('work/data/training_label.txt')
train_x_no_label = load_training_data('work/data/training_nolabel.txt')
print("加载完成。")

# 对 input 跟 labels 做预处理
preprocess = Preprocess(sen_len, w2v_path=w2v_path)
embedding_ = preprocess.make_embedding(load=True)
train_x = preprocess.sentence_word2id(train_x)
train_x_no_label = preprocess.sentence_word2id(train_x_no_label)

# 定义模型
model = LSTM_Net(embedding_, embedding_dim=250, hidden_dim=150, num_layers=1, dropout=0.5) #, fix_embedding=fix_embedding

#用sklearn中的函数,划分训练集与验证集
X_train, X_val, y_train, y_val = train_test_split(train_x, y, test_size = 0.1, random_state = 4)
print('Train | Len:{} \nValid | Len:{}'.format(len(y_train), len(y_val)))

# 把 data 做成 dataset 供 dataloader 取用
# train_dataset = TwitterDataset(X=X_train, y=y_train)
val_dataset = Reader(datas= X_val, labels= y_val)

# 把 data 转成 batch of tensors
# train_loader = DataLoader(train_dataset, batch_size= batchsize, shuffle = True) 
val_loader = DataLoader(val_dataset, batch_size= batchsize, shuffle = False)

打印:
李宏毅机器学习特训营机器学习作业4-语句分类_第4张图片

训练

验证集上的准确率在76%左右

# 开始训练
training(batchsize, epoch, lr, X_train,y_train,val_loader, train_x_no_label, model)

李宏毅机器学习特训营机器学习作业4-语句分类_第5张图片

预测测试集

#加载测试数据
print("加载测试数据 ...")
test_x = load_testing_data('work/data/testing_data.txt')
print("完成。")

#对测试数据进行预处理
test_x = preprocess.sentence_word2id(test_x)

# 测试数据读取
test_dataset = Reader(datas= test_x, labels= None) 
test_loader = DataLoader(test_dataset, batch_size= batchsize, shuffle = False)

#加载模型
model = LSTM_Net(embedding_, embedding_dim=250, hidden_dim=150, num_layers=1, dropout=0.5)
model.set_state_dict(paddle.load("model.pdparams"))
#测试函数
def testing(test_loader, model):
    model.eval()
    results = []
    print("预测中...")
    print("总批次:{}".format(len(test_loader)))
    with paddle.no_grad():
        for i, inputs in enumerate(test_loader):
            print('Batch | {}/{}'.format(i+1,len(test_loader)), end='\r')
            inp = inputs[0] #取出tensor
            outputs = model(inp)
            outputs = outputs.squeeze() # 删除等于1的维度
            outputs = outputs.numpy()
            outputs = outputs.reshape((1,-1))
            #负面标 1,正面标 0
            outputs[outputs>=0.5] = 1 # 大于等于0.5为负面
            outputs[outputs<0.5] = 0 # 小于0.5为正面
            outputs = outputs.astype(int)
            results += outputs[0].tolist()
        print('预测完成!')
    return results
#开始预测
outputs = testing(test_loader, model)

#把预测结果保存起来
import pandas as pd
tmp = pd.DataFrame({"id":[str(i) for i in range(len(test_x))],"label":outputs})
tmp.to_csv('predict_result.csv', index=False)

修改

把句子长度改为28

from sklearn.model_selection import train_test_split

# 定义句子长度、要训练几个 epoch、 学习率的值、 w2v的路径
sen_len = 28
batchsize = 128
epoch = 50
lr = 0.000125
w2v_path = 'w2v_all.model' 

print("加载文本数据 ...") # 读取 'training_label.txt'  'training_nolabel.txt' 
train_x, y = load_training_data('work/data/training_label.txt')
train_x_no_label = load_training_data('work/data/training_nolabel.txt')
print("加载完成。")

# 对 input 跟 labels 做预处理
preprocess = Preprocess(sen_len, w2v_path=w2v_path)
embedding_ = preprocess.make_embedding(load=True)
train_x = preprocess.sentence_word2id(train_x)
train_x_no_label = preprocess.sentence_word2id(train_x_no_label)

#用sklearn中的函数,划分训练集与验证集
X_train, X_val, y_train, y_val = train_test_split(train_x, y, test_size = 0.1, random_state = 4)
print('Train | Len:{} \nValid | Len:{}'.format(len(y_train), len(y_val)))

# 把 data 做成 dataset 供 dataloader 取用
# train_dataset = TwitterDataset(X=X_train, y=y_train)
val_dataset = Reader(datas= X_val, labels= y_val)

# 把 data 转成 batch of tensors
# train_loader = DataLoader(train_dataset, batch_size= batchsize, shuffle = True) 
val_loader = DataLoader(val_dataset, batch_size= batchsize, shuffle = False)

使用双向LSTM

from paddle import nn

class LSTM_Net(nn.Layer):
    def __init__(self, embedding, embedding_dim, hidden_dim, num_layers, dropout=0.5):
        super(LSTM_Net, self).__init__()
        # embedding layer
        self.embedding = paddle.nn.Embedding(embedding.shape[0],embedding.shape[1],weight_attr=paddle.framework.ParamAttr(initializer=paddle.nn.initializer.Assign(embedding)))
        # self.embedding_dim = embedding.shape[1]
        # self.hidden_dim = hidden_dim
        # self.num_layers = num_layers
        # self.dropout = dropout
        self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers=num_layers,direction='bidirect')
        self.classifier = nn.Sequential( 
        		nn.Dropout(dropout),
                nn.Linear(hidden_dim*2, 128),
                nn.Dropout(dropout),
                nn.Linear(128, 64),
                nn.Dropout(dropout),
                nn.Linear(64, 1),
                nn.Sigmoid() 
         )
        
    def forward(self, inputs):
        inputs = self.embedding(inputs)
        x, _ = self.lstm(inputs)
        # 对 LSTM 输出层的结果按列平均
        x = paddle.mean(x, axis=1)
        x = self.classifier(x)
        return x

训练集上的准确率提升到77%左右

# 开始训练
training(batchsize, epoch, lr, X_train,y_train,val_loader, train_x_no_label, model)

李宏毅机器学习特训营机器学习作业4-语句分类_第6张图片

总结

句子长度对模型训练结果有影响。

验证集上的准确率还不够高,后面可以考虑增加LSTM 的num_layers 网络层数,加入注意力机制。

你可能感兴趣的:(笔记,python,深度学习,自然语言处理,nlp)