R语言Meta分析【全流程、不确定性分析】方法与Meta机器学习

Meta分析是针对某一科研问题,根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法,对来源不同的研究成果进行收集、合并及定量统计分析的方法,最早出现于“循证医学”,现已广泛应用于农林生态,资源环境等方面。R语言拥有完整有效的数据处理、统计分析与保存机制,可以对数据直接进行分析和显示,命令格式简单、结果可读性强,包含众多针对Meta分析软件包,是进行Meta整合分析及评价的有效平台。

基于R语言的Meta分析【全流程、不确定性分析】方法与Meta机器学习高级应用

Meta分析的选题与检索

  1. 什么是Meta分析
  2. Meta分析的选题策略
  3. 文献检索数据库
  4. 精确检索策略,如何检索全、检索准
  5. 文献的管理与清洗,如何制定文献纳入排除标准
  6. 文献数据获取技巧
  7. 文献计量分析CiteSpace及研究热点分析

R语言Meta分析【全流程、不确定性分析】方法与Meta机器学习_第1张图片R语言Meta分析【全流程、不确定性分析】方法与Meta机器学习_第2张图片R语言Meta分析【全流程、不确定性分析】方法与Meta机器学习_第3张图片

 

Meta分析与R语言基础

2 Meta分析的常用软件与R语言基础

R语言做Meta分析的优势及其《Nature》、《Science》经典案例应用

R语言基本操作

R语言数据清洗方法

R语言Meta分析常用包及相关插件介绍与安装

自编程计算到调用Meta包meta、metafor、dmetar、esc、metasens、metamisc、meta4diaggemtcrobvisnetmetabrms等),全程分析如何进行meta计算、meta诊断、贝叶斯meta、网状meta、亚组分析、meta回归及作图

R语言Meta分析【全流程、不确定性分析】方法与Meta机器学习_第4张图片R语言Meta分析【全流程、不确定性分析】方法与Meta机器学习_第5张图片

R语言Meta分析与作图

3 R语言Meta分析

  1. R语言Meta分析的流程
  2. 各类meta效应值和累计效应值计算

连续资料的RR、MD与SMD

分类资料的RR和OR

  1. Meta亚组分析
  2. R语言图形可视化基础
  3. 如何用ggplot2绘制漂亮的森林图

 R语言Meta分析【全流程、不确定性分析】方法与Meta机器学习_第6张图片R语言Meta分析【全流程、不确定性分析】方法与Meta机器学习_第7张图片

 

 R语言Meta回归分析

  1. Meta回归统计分析理论及应用
  2. Meta回归和普通回归分析的异同
  3. 固定效应与随机效应分析
  4. 泡泡图(bubble)的绘制

 R语言Meta分析【全流程、不确定性分析】方法与Meta机器学习_第8张图片R语言Meta分析【全流程、不确定性分析】方法与Meta机器学习_第9张图片

R语言Meta分析【全流程、不确定性分析】方法与Meta机器学习_第10张图片 R语言Meta分析【全流程、不确定性分析】方法与Meta机器学习_第11张图片

 

 R语言Meta诊断分析

  1. Meta诊断分析(t2、I2、H2、Q等统计量)
  2. 异质性检验
  3. 敏感性分析
  4. 偏倚分析
  5. 风险分析

R语言Meta分析【全流程、不确定性分析】方法与Meta机器学习_第12张图片R语言Meta分析【全流程、不确定性分析】方法与Meta机器学习_第13张图片R语言Meta分析【全流程、不确定性分析】方法与Meta机器学习_第14张图片

 

 R语言Meta分析【全流程、不确定性分析】方法与Meta机器学习_第15张图片R语言Meta分析【全流程、不确定性分析】方法与Meta机器学习_第16张图片

R语言Meta分析【全流程、不确定性分析】方法与Meta机器学习_第17张图片 

R语言Meta分析【全流程、不确定性分析】方法与Meta机器学习_第18张图片 

 

 R语言Meta分析的不确定性

  1. 网状Meta分析
  2. 贝叶斯理论
  3. R语言贝叶斯工具StanJAGSbrms
  4. 贝叶斯Meta分析及不确定性分析

 

R语言Meta分析【全流程、不确定性分析】方法与Meta机器学习_第19张图片R语言Meta分析【全流程、不确定性分析】方法与Meta机器学习_第20张图片R语言Meta分析【全流程、不确定性分析】方法与Meta机器学习_第21张图片

R语言Meta分析【全流程、不确定性分析】方法与Meta机器学习_第22张图片 R语言Meta分析【全流程、不确定性分析】方法与Meta机器学习_第23张图片R语言Meta分析【全流程、不确定性分析】方法与Meta机器学习_第24张图片

机器学习在Meta分析中的应用

  1. 机器学习基础以及Meta机器学习的优势
  2. Meta加权随机森林(MetaForest)的使用
  3. 使用Meta机器学习对文献中的大数据进行整合
  4. 使用机器学习进行驱动因子分析

 R语言Meta分析【全流程、不确定性分析】方法与Meta机器学习_第25张图片R语言Meta分析【全流程、不确定性分析】方法与Meta机器学习_第26张图片

 

 点击查看原文

你可能感兴趣的:(R语言,遥感,深度学习,大数据,机器学习,数据分析)