数据特征分析之分布分析

数据特征分析之分布分析


利用python做数据分析,数据特征分析之分布分析,个人学习笔记,欢迎指正
(1)导入数据分析包

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
% matplotlib inline

(2)数据读取,利用散点图显示

# 数据读取

data = pd.read_csv('C:/Users/Hjx/Desktop/深圳罗湖二手房信息.csv',engine = 'python')
plt.scatter(data['经度'],data['纬度'],  # 按照经纬度显示
            s = data['房屋单价']/500,  # 按照单价显示大小
            c = data['参考总价'],  # 按照总价显示颜色
            alpha = 0.4, cmap = 'Reds')  
plt.grid()
print(data.dtypes)
print('-------\n数据长度为%i条' % len(data))
data.head()
# 通过数据可见,一共8个字段
# 定量字段:房屋单价,参考首付,参考总价,*经度,*纬度,*房屋编码
# 定性字段:小区,朝向

数据特征分析之分布分析_第1张图片
(3)计算极差,这里运用了函数

# 极差:max-min

def d_range(df,*cols):
    krange = []
    for col in cols:
        crange = df[col].max() - df[col].min()
        krange.append(crange)
    return(krange)
# 创建函数求极差

key1 = '参考首付'
key2 = '参考总价'
dr = d_range(data,key1,key2)
print('%s极差为 %f \n%s极差为 %f' % (key1, dr[0], key2, dr[1]))
# 求出数据对应列的极差

结果为:
参考首付极差为 52.500000
参考总价极差为 175.000000
(4) 频率分布情况 - 定量字段,通过直方图直接判断分组组数

data[key2].hist(bins=10)
# 简单查看数据分布,确定分布组数 → 一般8-16即可
# 这里以10组为参考

数据特征分析之分布分析_第2张图片
(5)求出分组区间

gcut = pd.cut(data[key2],10,right=False)
gcut_count = gcut.value_counts(sort=False)  # 不排序
data['%s分组区间' % key2] = gcut.values
print(gcut.head(),'\n------')
print(gcut_count)
data.head()
# pd.cut(x, bins, right):按照组数对x分组,且返回一个和x同样长度的分组dataframe,right → 是否右边包含,默认True
# 通过groupby查看不同组的数据频率分布
# 给源数据data添加“分组区间”列

数据特征分析之分布分析_第3张图片
(6)频率分布情况 - 定量字段
求出目标字段下频率分布的其他统计量 → 频数,频率,累计频率

r_zj = pd.DataFrame(gcut_count)
r_zj.rename(columns ={gcut_count.name:'频数'}, inplace = True)  # 修改频数字段名
r_zj['频率'] = r_zj / r_zj['频数'].sum()  # 计算频率
r_zj['累计频率'] = r_zj['频率'].cumsum()  # 计算累计频率
r_zj['频率%'] = r_zj['频率'].apply(lambda x: "%.2f%%" % (x*100))  # 以百分比显示频率
r_zj['累计频率%'] = r_zj['累计频率'].apply(lambda x: "%.2f%%" % (x*100))  # 以百分比显示累计频率
r_zj.style.bar(subset=['频率','累计频率'], color='green',width=100)
# 可视化显示

数据特征分析之分布分析_第4张图片
(7)频率分布情况 - 定量字段
绘制频率直方图

r_zj['频率'].plot(kind = 'bar',
                 width = 0.8,
                 figsize = (12,2),
                 rot = 0,
                 color = 'k',
                 grid = True,
                 alpha = 0.5)
plt.title('参考总价分布频率直方图')
# 绘制直方图

x = len(r_zj)
y = r_zj['频率']
m = r_zj['频数']
for i,j,k in zip(range(x),y,m):
    plt.text(i-0.1,j+0.01,'%i' % k, color = 'k')
# 添加频数标签

数据特征分析之分布分析_第5张图片
(8)频率分布情况 - 定性字段
① 通过计数统计判断不同类别的频率

cx_g = data['朝向'].value_counts(sort=True)
print(cx_g)
# 统计频率

r_cx = pd.DataFrame(cx_g)
r_cx.rename(columns ={cx_g.name:'频数'}, inplace = True)  # 修改频数字段名
r_cx['频率'] = r_cx / r_cx['频数'].sum()  # 计算频率
r_cx['累计频率'] = r_cx['频率'].cumsum()  # 计算累计频率
r_cx['频率%'] = r_cx['频率'].apply(lambda x: "%.2f%%" % (x*100))  # 以百分比显示频率
r_cx['累计频率%'] = r_cx['累计频率'].apply(lambda x: "%.2f%%" % (x*100))  # 以百分比显示累计频率
r_cx.style.bar(subset=['频率','累计频率'], color='#d65f5f',width=100)
# 可视化显示

数据特征分析之分布分析_第6张图片
(9)频率分布情况 - 定量字段
② 绘制频率直方图、饼图

plt.figure(num = 1,figsize = (12,2))
r_cx['频率'].plot(kind = 'bar',
                 width = 0.8,
                 rot = 0,
                 color = 'k',
                 grid = True,
                 alpha = 0.5)
plt.title('参考总价分布频率直方图')
# 绘制直方图

plt.figure(num = 2)
plt.pie(r_cx['频数'],
       labels = r_cx.index,
       autopct='%.2f%%',
       shadow = True)
plt.axis('equal')
# 绘制饼图

数据特征分析之分布分析_第7张图片
结束!

你可能感兴趣的:(Python数据分析,分布分析,python)