Chapter 1 The Machine Learning landscape (GDP per capita 与Life satification)

设置

from __feature__import division,print_function,unicode_literals

import numpy as np
np.random.seed(42)

%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
plt.rcParams['axes.labelsize'] = 14
plt.rcParams['xtick.labelsize'] = 12
plt.rcParams['xtick.labelsize'] = 12

import os
PROJECT_ROOT_DIR = "."
CHAPTER_ID = "fundamentals"

def save_fig(fig_id,tight_layout = True):
    path = os.path.join(PROJECT_ROOT_DIR,"images",CHAPTER_ID,fig_id + '.png')
    print("saving figure",fig_id)
    if tight_layout:
        plt.tight_layout()
    plt.savefig(path,format = 'png',dpi = 300)

import warnings
warnings.filterwarnings(action = "ignore",module = "scipy",message = "internal gelsd")

 加载并查看数据

import os
datapath = os.path.join("datasets","lifesat","")


import numpy as np
import pandas as pd
oecd_bli = pd.read_csv(datapath + "oecd_bli_2015.csv", thousands=',')
gdp_per_capita = pd.read_csv(datapath + "gdp_per_capita.csv",thousands=',',delimiter='\t',
                             encoding='latin1', na_values="n/a") 

def prepare_country_stats(oecd_bli, gdp_per_capita):
    oecd_bli = oecd_bli[oecd_bli["INEQUALITY"]=="TOT"] 
    oecd_bli = oecd_bli.pivot(index="Country", columns="Indicator", values="Value") 
    gdp_per_capita.rename(columns={"2015": "GDP per capita"}, inplace=True)
    gdp_per_capita.set_index("Country", inplace=True) 
    full_country_stats = pd.merge(left=oecd_bli, right=gdp_per_capita,
                                  left_index=True, right_index=True) 
    full_country_stats.sort_values(by="GDP per capita", inplace=True) 
    remove_indices = [0, 1, 6, 8, 33, 34, 35] 
    keep_indices = list(set(range(36)) - set(remove_indices)) 
    return full_country_stats[["GDP per capita", 'Life satisfaction']].iloc[keep_indices] 

country_stats = prepare_country_stats(oecd_bli, gdp_per_capita)
X = np.c_[country_stats["GDP per capita"]] 
y = np.c_[country_stats["Life satisfaction"]] 


import matplotlib
import matplotlib.pyplot as plt
country_stats.plot(kind='scatter', x="GDP per capita", y='Life satisfaction') 
plt.show()


import sklearn.linear_model
model = sklearn.linear_model.LinearRegression() 
model.fit(X, y) 
X_new = [[22587]] 
print(model.predict(X_new))

 Chapter 1 The Machine Learning landscape (GDP per capita 与Life satification)_第1张图片

载入并准备生活满意度

oecd_bli.head(2)

Chapter 1 The Machine Learning landscape (GDP per capita 与Life satification)_第2张图片

Chapter 1 The Machine Learning landscape (GDP per capita 与Life satification)_第3张图片

oecd_bli["Life satisfaction"].head()

Chapter 1 The Machine Learning landscape (GDP per capita 与Life satification)_第4张图片

载入并准备人均GDP

gdp_per_capita.head(2)

 对full_country_stats数据进行操作

full_country_stats

Chapter 1 The Machine Learning landscape (GDP per capita 与Life satification)_第5张图片

Chapter 1 The Machine Learning landscape (GDP per capita 与Life satification)_第6张图片

full_country_stats[["GDP per capita",'Life satisfaction']].loc["Uited States"]

对sample_data数据进行操作 

sample_data = full_country_stats[["GDP per capita", 'Life satisfaction']].iloc[keep_indices]
missing_data = full_country_stats[["GDP per capita", 'Life satisfaction']].iloc[remove_indices] 

sample_data.plot(kind='scatter', x="GDP per capita", y='Life satisfaction', figsize=(5,3))
plt.axis([0, 60000, 0, 10]) 
position_text = {
    "Hungary": (5000, 1),
    "Korea": (18000, 1.7),
    "France": (29000, 2.4),
    "Australia": (40000, 3.0),
    "United States": (52000, 3.8),
} 
for country, pos_text in position_text.items():
    pos_data_x, pos_data_y = sample_data.loc[country]
    country = "U.S." if country == "United States" else country 
    plt.annotate(country, xy=(pos_data_x, pos_data_y), xytext=pos_text,
            arrowprops=dict(facecolor='black', width=0.5, shrink=0.1, headwidth=5)) 
    plt.plot(pos_data_x, pos_data_y, "ro") 
save_fig('money_happy_scatterplot')
plt.show()

Chapter 1 The Machine Learning landscape (GDP per capita 与Life satification)_第7张图片

sample_data.to_csv(os.path.join("datasets","lifesat","lifesat.csv"))
sample_data.loc[list(position_text.keys)]

Chapter 1 The Machine Learning landscape (GDP per capita 与Life satification)_第8张图片

import numpy as np
sample_data.plot(kind='scatter', x="GDP per capita", y='Life satisfaction', figsize=(5,3))
plt.axis([0, 60000, 0, 10])
X=np.linspace(0, 60000, 1000)
plt.plot(X, 2*X/100000, "r")
plt.text(40000, 2.7, r"$\theta_0 = 0$", fontsize=14, color="r") # r"$公式$" 
plt.text(40000, 1.8, r"$\theta_1 = 2 \times 10^{-5}$", fontsize=14, color="r") 
plt.plot(X, 8 - 5*X/100000, "g")
plt.text(5000, 9.1, r"$\theta_0 = 8$", fontsize=14, color="g")
plt.text(5000, 8.2, r"$\theta_1 = -5 \times 10^{-5}$", fontsize=14, color="g")
plt.plot(X, 4 + 5*X/100000, "b")
plt.text(5000, 3.5, r"$\theta_0 = 4$", fontsize=14, color="b")
plt.text(5000, 2.6, r"$\theta_1 = 5 \times 10^{-5}$", fontsize=14, color="b")
save_fig('tweaking_model_params_plot')
plt.show()

Chapter 1 The Machine Learning landscape (GDP per capita 与Life satification)_第9张图片

from sklearn import linear_model
lin1 = linear_model.LinearRegression()
Xsample = np.c_[sample_data["GDP per capita"]] 
ysample = np.c_[sample_data["Life satisfaction"]] 
lin1.fit(Xsample, ysample) 
t0, t1 = lin1.intercept_[0], lin1.coef_[0][0] 
t0, t1

sample_data.plot(kind='scatter', x="GDP per capita", y='Life satisfaction', figsize=(5,3))
plt.axis([0, 60000, 0, 10])
X=np.linspace(0, 60000, 1000)
plt.plot(X, t0 + t1*X, "b") 
plt.text(5000, 3.1, r"$\theta_0 = 4.85$", fontsize=14, color="b")
plt.text(5000, 2.2, r"$\theta_1 = 4.91 \times 10^{-5}$", fontsize=14, color="b")
save_fig('best_fit_model_plot')
plt.show()

 

Chapter 1 The Machine Learning landscape (GDP per capita 与Life satification)_第10张图片

cyprus_gdp_per_capita = gdp_per_capita.loc["Cyprus"]["GDP per capita"] 
print(cyprus_gdp_per_capita)
#cyprus_gdp_per_capita = np.array(cyprus_gdp_per_capita).reshape(1, -1) [[22587.49]]
cyprus_predicted_life_satisfaction = lin1.predict(np.array(cyprus_gdp_per_capita).reshape(1, -1))[0][0] 
cyprus_predicted_life_satisfaction

sample_data.plot(kind='scatter', x="GDP per capita", y='Life satisfaction', figsize=(5,3), s=1)
X=np.linspace(0, 60000, 1000)
plt.plot(X, t0 + t1*X, "b")
plt.axis([0, 60000, 0, 10])
plt.text(5000, 7.5, r"$\theta_0 = 4.85$", fontsize=14, color="b")
plt.text(5000, 6.6, r"$\theta_1 = 4.91 \times 10^{-5}$", fontsize=14, color="b")
plt.plot([cyprus_gdp_per_capita, cyprus_gdp_per_capita], [cyprus_predicted_life_satisfaction,0], "r--") 
plt.text(25000, 5.0, r"Prediction = 5.96", fontsize=14, color="b")
plt.plot(cyprus_gdp_per_capita, cyprus_predicted_life_satisfaction, "ro")
save_fig('cyprus_prediction_plot')
plt.show()

Chapter 1 The Machine Learning landscape (GDP per capita 与Life satification)_第11张图片

sample_data[7:10]

Chapter 1 The Machine Learning landscape (GDP per capita 与Life satification)_第12张图片

对missing_data数据进行操作

missing_data

Chapter 1 The Machine Learning landscape (GDP per capita 与Life satification)_第13张图片

position_text2 = {
    "Brazil": (1000, 9.0),
    "Mexico": (11000, 9.0),
    "Chile": (25000, 9.0),
    "Czech Republic": (35000, 9.0),
    "Norway": (60000, 3),
    "Switzerland": (72000, 3.0),
    "Luxembourg": (90000, 3.0),
}

sample_data.plot(kind='scatter', x="GDP per capita", y='Life satisfaction', figsize=(8,3))
plt.axis([0, 110000, 0, 10])
for country, pos_text in position_text2.items():
    pos_data_x, pos_data_y = missing_data.loc[country]
    plt.annotate(country, xy=(pos_data_x, pos_data_y), xytext=pos_text,
            arrowprops=dict(facecolor='black', width=0.5, shrink=0.1, headwidth=5))
    plt.plot(pos_data_x, pos_data_y, "rs")

X=np.linspace(0, 110000, 1000)
plt.plot(X, t0 + t1*X, "b:") 
lin_reg_full = linear_model.LinearRegression()
Xfull = np.c_[full_country_stats["GDP per capita"]]
yfull = np.c_[full_country_stats["Life satisfaction"]]
lin_reg_full.fit(Xfull, yfull)

t0full, t1full = lin_reg_full.intercept_[0], lin_reg_full.coef_[0][0]
X = np.linspace(0, 110000, 1000)
plt.plot(X, t0full + t1full * X, "k") 
save_fig('representative_training_data_scatterplot')
plt.show()

Chapter 1 The Machine Learning landscape (GDP per capita 与Life satification)_第14张图片

用流水线对full_country_stats进行操作

full_country_stats.plot(kind='scatter', x="GDP per capita", y='Life satisfaction', figsize=(8,3))
plt.axis([0, 110000, 0, 10])

from sklearn import preprocessing
from sklearn import pipeline

poly = preprocessing.PolynomialFeatures(degree=60, include_bias=False)
scaler = preprocessing.StandardScaler() 
lin_reg2 = linear_model.LinearRegression() 

pipeline_reg = pipeline.Pipeline([('poly', poly), ('scal', scaler), ('lin', lin_reg2)]) 
pipeline_reg.fit(Xfull, yfull)
curve = pipeline_reg.predict(np.array(X).reshape(-1,1)) 
plt.plot(X, curve)
save_fig('overfitting_model_plot')
plt.show()

Chapter 1 The Machine Learning landscape (GDP per capita 与Life satification)_第15张图片

full_country_stats.loc[[c for c in full_country_stats.index if "W" in c.upper()]]["Life satisfaction"]

Chapter 1 The Machine Learning landscape (GDP per capita 与Life satification)_第16张图片

gdp_per_capita.loc[[c for c in gdp_per_capita.index if "W" in c.upper()]].head()

Chapter 1 The Machine Learning landscape (GDP per capita 与Life satification)_第17张图片

plt.figure(figsize=(8,3))
plt.xlabel("GDP per capita")
plt.ylabel('Life satisfaction')

plt.plot(list(sample_data["GDP per capita"]), list(sample_data["Life satisfaction"]), "bo")
plt.plot(list(missing_data["GDP per capita"]), list(missing_data["Life satisfaction"]), "rs")

X = np.linspace(0, 110000, 1000)
plt.plot(X, t0full + t1full * X, "r--", label="Linear model on all data")
plt.plot(X, t0 + t1*X, "b:", label="Linear model on partial data")

ridge = linear_model.Ridge(alpha=10**9.5) 
Xsample = np.c_[sample_data["GDP per capita"]]
ysample = np.c_[sample_data["Life satisfaction"]]
ridge.fit(Xsample, ysample)
t0ridge, t1ridge = ridge.intercept_[0], ridge.coef_[0][0]
plt.plot(X, t0ridge + t1ridge * X, "b", label="Regularized linear model on partial data") 

plt.legend(loc="lower right")
plt.axis([0, 110000, 0, 10])
save_fig('ridge_model_plot')
plt.show()

Chapter 1 The Machine Learning landscape (GDP per capita 与Life satification)_第18张图片

你可能感兴趣的:(机器学习,机器学习,python)