基于ricequant线性回归量化交易

研究平台代码

import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression

# 确定每月日期 2014-01-01~2016-01-01
dates = get_trading_dates(start_date="2014-01-01", end_date="2016-01-01")
# 每天日期---->每月月末
# 每月最后一个交易日, 按月计算收益率
month_date = []
for i in range(len(dates) -1):
  if dates[i].year != dates[i+1].year:
    month_date.append(dates[i])
  elif dates[i].month != dates[i+1].month:
    month_date.append(dates[i])

#把最后一个交易日加入
month_date.append(dates[-1])

stocks = index_components("000300.XSHG")

all_data = pd.DataFrame()
len_date = len(month_date[:-1])
for i in range(0, len_date):
  date = month_date[i]
  date_next = None
  if i + 1 < len_date:
    date_next = month_date[i+1]
    
  fund = get_factor(stocks, ["pe_ratio_lyr","pb_ratio_lyr","market_cap","ev_lyr","return_on_asset_net_profit_lyr","du_return_on_equity_lyr","basic_earnings_per_share","net_profit_to_revenue_lyr","total_expense"]
                 ,start_date=date,end_date=date)
  fund.reset_index(inplace=True)
  fund.sort_index(inplace=True)

  fund['next_month_return'] = np.nan
  if not (date_next is None):
      for i in range(0, fund.shape[0]):
        stock = fund.iloc[i]["order_book_id"]
        price1 = get_price(stock, start_date=date, end_date=date, fields='close')
        price2 = get_price(stock, start_date=date_next, end_date=date_next, fields='close')
        if (price1 is not None) and (price2 is not None):
            price1.reset_index(inplace=True)
            price2.reset_index(inplace=True)
            fund.loc[i:i,('next_month_return')] = (float)(price2["close"] / price1["close"]) - 1 #赋值不强转就赋值不上

  # 进行每月因子数据拼接
  all_data = pd.concat([all_data, fund])

# 把收益率为空删除
all_data = all_data.dropna()

def mad(factor):
  """3倍中位数去极值
  """
  # 求出因子值的中位数
  med = np.median(factor)

  # 求出因子值与中位数的差值,进行绝对值
  mad = np.median(np.abs(factor - med))

  # 定义几倍的中位数上下限
  high = med + (3 * 1.4826 * mad)
  low = med - (3 * 1.4826 * mad)

  # 替换上下限以外的值
  factor = np.where(factor > high, high, factor)
  factor = np.where(factor < low, low, factor)
  return factor

def stand(factor):
    """标准化
    """
    mean = np.mean(factor)
    std = np.std(factor)
    return (factor - mean)/std

#随机打乱,并采样,index已乱
all_data = all_data.sample(frac=0.7) 

#训练数据
x = all_data[["pe_ratio_lyr","pb_ratio_lyr","market_cap","ev_lyr","return_on_asset_net_profit_lyr","du_return_on_equity_lyr","basic_earnings_per_share","net_profit_to_revenue_lyr","total_expense"]].copy()

# 取出目标值
y = all_data[['next_month_return']].copy()

# 1、特征值处理
# 去极值、标准化、中性化
for name in x.columns:
  x[name] = mad(x[name])
  x[name] = stand(x[name])

x_market_cap = x["market_cap"]
for name in x.columns:
    if name == "market_cap":
      continue

    # 准备特征值、目标值
    # x_market_cap
    y_factor = x[name]

    # 线性回归方程建立
    lr = LinearRegression()

    lr.fit(x_market_cap.values.reshape(-1, 1), y_factor)

    y_predict = lr.predict(x_market_cap.values.reshape(-1, 1))

    # 得出真实值与预测之间的误差当做新的因子值
    x[name] = y_factor - y_predict

# 收益率目标值y 
y = stand(y)

lr = LinearRegression()
lr.fit(x, y)
lr.coef_

得出回归系数

 我的策略实现

# 可以自己import我们平台支持的第三方python模块,比如pandas、numpy等。
# 回测区间:2014-01-01~2018-01-01
# 选股:
# 范围:沪深300
# 因子:
# 方法:回归法,利用系数相乘(矩阵相乘运算)得出结果排序

import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression, Ridge


# 在这个方法中编写任何的初始化逻辑。context对象将会在你的算法策略的任何方法之间做传递。
def init(context):
    context.stock_num = 20
    
    # 定义沪深300指数股
    context.hs300 = index_components("000300.XSHG")

    scheduler.run_monthly(regression_select, tradingday=1)

def regression_select(context, bar_dict):
    """回归法进行选择股票
    准备因子数据、数据处理(缺失值、去极值、标准化、中性化)
    预测每个股票对应这一天的结果,然后排序选出前20只股票
    """      fundamentals.income_statement.total_expense).filter(fundamentals.stockcode.in_(context.hs300))

    # fund = get_fundamentals(q,expect_df=True)
    fund = get_factor(context.hs300, ["pe_ratio_lyr","pb_ratio_lyr","market_cap","ev_lyr","return_on_asset_net_profit_lyr","du_return_on_equity_lyr","basic_earnings_per_share","net_profit_to_revenue_lyr","total_expense"])

    factors_data = fund

    # 2、处理数据
    # 缺失值
    factors_data = factors_data.dropna()
    # 保留原来的数据,后续处理
    factors1 = pd.DataFrame()
    # 去极值
    for name in factors_data.columns:
        factors1[name] = mad(factors_data[name])

    # logger.info(factors1)

    # 标准化
    std = StandardScaler()

    # factors1 dataframe  --->
    factors1 = std.fit_transform(factors1)

    # 将factors1还原成dataframe,方便后面取数据处理
    factors1 = pd.DataFrame(factors1, index=factors_data.index, columns=factors_data.columns)

    # 给中心化处理
    # 确定中性化:特征值:原始的市值,目标值:处理过后的因子数据
    x = factors_data['market_cap']
    for name in factors1.columns:
        # 跳过market_cap
        if name == "market_cap":
            continue
        # 取出因子作为目标值
        y = factors1[name]

        # 建立回归方程,得出预测结果
        # 用真是结果-预测结果得到残差,即为新的因子值
        lr = LinearRegression()

        lr.fit(x.values.reshape(-1, 1), y.values)

        # 预测结果
        y_predict = lr.predict(x.values.reshape(-1, 1))

        # 得出没有相关性的残差部分
        res = y - y_predict

        # 将残差部分作为新的因子值
        factors1[name] = res

    # 处理结束,factors1即为我们最终需要的数据结果

    # 3、选股
    # 建立回归方程,得出预测结果,然后排序选出30个股票
    # 特征值:factors1:9个因子特征值
    #  训练的权重系数为:9个权重
    # 假如5月1日,
    # 得出的结果:相当于预测接下来的5月份收益率,哪个收益率高选谁

    weights = np.array([ 0.05082123, -0.00411096, -0.09166143,  0.03656969, -0.07487511,
        -0.04669774,  0.07647528,  0.02942259,  0.10650444])

    # 进行特征值与权重之间的矩阵运算
    # (m行,n列) *(n行,l列) = (m行,l列)
    # (300, 9) * (9, 1) = (300, 1)
    return_ = np.matmul(factors1, weights.reshape(-1, 1))

    # logger.info(stock_return)
    #  根据收益率的大小排序去选股
    # 将股票的代码和收益率绑定一起排序
    factors1 = factors1.reset_index()
    return_ = return_.reset_index()
    #print(len(return_["order_book_id"]))
    return_ = return_.dropna()
    # print(len(return_[0]))
    # print(return_["order_book_id"])
    #stock_return = dict(zip(factors1.index, return_))
    stock_return = dict(zip(return_["order_book_id"], return_[0]))
    
    # logger.info(stock_return)
    # 对字典进行排序
    score = sorted(stock_return.items(), key=lambda x: x[1], reverse=True)[:20]

    # 取出score的股票代码
    context.stocklist = [x[0] for x in score]

    # logger.info(context.stocklist)
    rebalance(context)

def rebalance(context):
    # 卖出
    for stock in context.portfolio.positions.keys():

        if context.portfolio.positions[stock].quantity > 0:

            if stock not in context.stocklist:
                order_target_percent(stock, 0)

    weight = 1.0 / len(context.stocklist)
    # 买入
    for stock in context.stocklist:
        order_target_percent(stock, weight)

# before_trading此函数会在每天策略交易开始前被调用,当天只会被调用一次
def before_trading(context):
    pass


# 你选择的证券的数据更新将会触发此段逻辑,例如日或分钟历史数据切片或者是实时数据切片更新
def handle_bar(context, bar_dict):
    # 开始编写你的主要的算法逻辑

    # bar_dict[order_book_id] 可以拿到某个证券的bar信息
    # context.portfolio 可以拿到现在的投资组合信息

    # 使用order_shares(id_or_ins, amount)方法进行落单

    # TODO: 开始编写你的算法吧!
    #order_shares(context.s1, 1000)
    pass

# after_trading函数会在每天交易结束后被调用,当天只会被调用一次
def after_trading(context):
    pass

def mad(factor):
    """3倍中位数去极值
    """
    # 求出因子值的中位数
    med = np.median(factor)

    # 求出因子值与中位数的差值,进行绝对值
    mad = np.median(np.abs(factor - med))

    # 定义几倍的中位数上下限
    high = med + (3 * 1.4826 * mad)
    low = med - (3 * 1.4826 * mad)

    # 替换上下限以外的值
    factor = np.where(factor > high, high, factor)
    factor = np.where(factor < low, low, factor)

    return factor

测试结果:

基于ricequant线性回归量化交易_第1张图片

获得超过市场预期1倍的收益 

你可能感兴趣的:(机器学习,量化交易,python,线性回归,算法,回归,ricequant线性回归,量化交易)