学习 CascadeClassifier::detectMultiScale 各个参数作用

CascadeClassifier::detectMultiScaleconst Mat& image, vectorobjects, double scaleFactor=1.1,int minNeighbors, int flag

这里先将图像变成灰度图,对它应用直方图均衡化,做一些预处理的工作。接下来检测人脸,调用detectMultiScale函数,该函数在输入图像的不同尺度中检测物体。

1. image为输入的灰度图像

2. objects为得到被检测物体的矩形框向量组

3. scaleFactor为每一个图像尺度中的尺度参数,默认值为1.1

4. minNeighbors参数为每一个级联矩形应该保留的邻近个数(没能理解这个参数,-_-|||),默认为3

5. flags对于新的分类器没有用(但目前的haar分类器都是旧版的,CV_HAAR_DO_CANNY_PRUNING利用Canny边缘检测器来排除一些边缘很少或者很多的图像区域,CV_HAAR_SCALE_IMAGE就是按比例正常检测,CV_HAAR_FIND_BIGGEST_OBJECT只检测最大的物,CV_HAAR_DO_ROUGH_SEARCH只做初略检测。


你可能感兴趣的:(科研)