计算机视觉——语义分割入门级综述

计算机视觉——语义分割

  • 语义分割是什么?
  • 语义分割评价
  • 语义分割数据集
  • 经典算法介绍
    • FCN
    • Pyramid Scene Parsing Network
    • Deeplab V1 V2 V3 V3plus
    • UperNet
    • Squeeze-and-Excitation Networks
    • Selective Kernel Networks
    • Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks
    • CBAM
    • ENCnet
    • PSANet
    • Attention is All you Need
    • Non-local Neural Networks
    • Asymmetric Non-Local Neural Networks
    • DANET
    • GCNet
    • CCNet
    • DNLnet
    • SFNet
    • AlignSeg
    • OCRnet
    • HIERARCHICAL MULTI-SCALE ATTENTION

语义分割是什么?

计算机视觉——语义分割入门级综述_第1张图片
语义分割是典型的CV问题,输入为原始数据(如平面图像),输出为具有突出显示的感兴趣区域的掩膜。过程是通过查找每一个像素并根据其所属感兴趣的对象分配相应ID。

语义分割评价

  • IOU=TP/(FP+FN+TP) 即交并比
  • mIOU=mean(IOU) 即均交并比,在每个类上度量再求平均
  • PA=TP/ALL 即像素精度
  • mPA=mean(PA) 即均像素精度,是PA的简单提升,计算每个类内的正确分类像素比例再求平均。

语义分割相关概念可见论文:Zhou, Bolei, Zhao, Hang, Puig, Xavier,etal. Semantic Understanding of Scenes through the ADE20K Dataset[J]. International Journal of Computer Vision, 2016, 127(3):302-321.

语义分割数据集

  • CityScapes 城市车道
  • ADE20K 通用
  • MSCOCO 通用
  • CityScapes 3D 城市车道
  • Pascal VOC 通用
  • Mapillary Vistas 城市街道

经典算法介绍

以下是我整理的在理解各个算法时看到比较好的博客讲解(仅供参考),大部分博客中有论文原地址。

FCN

相关论文:Long J , Shelhamer E , Darrell T . Fully Convolutional Networks for Semantic Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4):640-651.
博客讲解:FCN的理解

Pyramid Scene Parsing Network

相关论文:Zhao H , Shi J , Qi X , et al. Pyramid Scene Parsing Network[J]. 2016.
博客讲解:论文笔记:《Pyramid Scene Parsing Network》

Deeplab V1 V2 V3 V3plus

相关论文:Chen L C , Papandreou G , Kokkinos I , et al. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848.
博客讲解:DeepLab系列之V1(点进去还有其他三个)

UperNet

相关论文:Xiao T , Liu Y , Zhou B , et al. Unified Perceptual Parsing for Scene Understanding[J]. 2018.
博客讲解:ECCV 2018 | 旷视科技提出统一感知解析网络 UPerNet,优化场景理解

Squeeze-and-Excitation Networks

相关论文:Jie, Shen, Samuel,etal. Squeeze-and-Excitation Networks.[J]. IEEE transactions on pattern analysis and machine intelligence, 2019.
博客讲解:Momenta详解ImageNet 2017夺冠架构SENet

Selective Kernel Networks

相关论文:Li X , Wang W , Hu X , et al. Selective Kernel Networks[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020.
博客讲解:选择核心网络——SKNet(解读)

Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks

相关论文:Hu J , Shen L , Albanie S , et al. Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks[J]. 2018.
博客讲解:NIPS2018深度学习(26)–点进去第二个

CBAM

相关论文:Woo S , Park J , Lee J Y , et al. CBAM: Convolutional Block Attention Module[J]. 2018.
博客讲解:【论文阅读】CBAM:Convolutional Block Attention Module

ENCnet

相关论文:Zhang H, Dana K J, Shi J, et al. Context Encoding for Semantic Segmentation[C]. computer vision and pattern recognition, 2018: 7151-7160.
博客讲解:语义分割–(EncNet)Context Encoding for Semantic Segmentation

PSANet

相关论文:Jia J . PSANet: Point-wise Spatial Attention Network for Scene Parsing[J]. 2018.
博客讲解:Spatial Attention Network for Scene Parsing

Attention is All you Need

相关论文:Vaswani A, Shazeer N, Parmar N, et al. Attention is All you Need[C]. neural information processing systems, 2017: 5998-6008.
博客讲解:《attention is all you need》解读

Non-local Neural Networks

相关论文:Wang X , Girshick R , Gupta A , et al. Non-local Neural Networks[J]. 2017.
博客讲解:Non-local neural networks

Asymmetric Non-Local Neural Networks

相关论文:Zhu Z , Xu M , Bai S , et al. Asymmetric Non-Local Neural Networks for Semantic Segmentation[J]. 2019.
博客讲解:ANN:Asymmetric Non-local Neural Networks for Semantic Segmentation 文章解读

DANET

相关论文:Fu J , Liu J , Tian H , et al. Dual Attention Network for Scene Segmentation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020.
博客讲解:DANet论文及代码阅读笔记

GCNet

相关论文:Cao Y, Xu J, Lin S, et al. GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond[J]. arXiv: Computer Vision and Pattern Recognition, 2019.
博客讲解:CVPR2019之GCNet解读

CCNet

相关论文:Huang Z , Wang X , Wei Y , et al. CCNet: Criss-Cross Attention for Semantic Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, PP(99):1-1.
博客讲解:CCNet

DNLnet

相关论文:Disentangled Non-Local Neural Networks ECCV 2020
博客讲解:解耦Non-Local模块,比传统Non-Local提升1.5-3个点 | Disentangled Non-Local Neural Networks

SFNet

相关论文:Xiangtai Li, Ansheng You et al. Semantic Flow for Fast and Accurate Scene Parsing. ECCV, 2020.
博客讲解:2020语义分割网络语义流:Semantic Flow for Fast and Accurate Scene Parsing

AlignSeg

相关论文:Zilong Huang et al. AlignSeg: Feature-Aligned Segmentation Networks. arXiv: 2003.00872.
博客讲解:AlignSeg 语义分割ADE20K数据集SOTA | Feature-Aligned Segmentation

OCRnet

相关论文:Object-Contextual Representations for Semantic Segmentation ECCV 2020
博客讲解:OCRNet: 目标区域上下文信息的特征表达 | ECCV 2020

HIERARCHICAL MULTI-SCALE ATTENTION

相关论文:HIERARCHICAL MULTI-SCALE ATTENTION FOR SEMANTIC SEGMENTATION ECCV 2020
博客讲解:【语义分割】分层多尺度注意力 Hierarchical multi-scale attention for semantic segmentation

你可能感兴趣的:(学习笔记,算法,python,深度学习,机器学习,计算机视觉)