cv::Ptr cv::createBoxFilter( int srcType,
int dstType, Size ksize,Point anchor,
bool normalize, int borderType )
{
// 基础参数设置 图像深度
int sdepth = CV_MAT_DEPTH(srcType);
int cn = CV_MAT_CN(srcType), sumType = CV_64F;
if( sdepth <= CV_32S && (!normalize ||
ksize.width*ksize.height <= (sdepth == CV_8U ? (1<<23) :
sdepth == CV_16U ? (1 << 15) : (1 << 16))) )
sumType = CV_32S;
sumType = CV_MAKETYPE( sumType, cn );
// 获取滤波类中行滤波器信息
Ptr rowFilter = getRowSumFilter(srcType,
sumType, ksize.width, anchor.x );
// 获取滤波类中列滤波器信息
Ptr columnFilter = getColumnSumFilter(sumType,
dstType, ksize.height, anchor.y, normalize ?
1./(ksize.width*ksize.height) : 1);
// 返回滤波器基类生成
return Ptr(new FilterEngine(Ptr(0),
rowFilter, columnFilter,
srcType, dstType, sumType, borderType ));
}
// 盒子滤波器实现
void cv::boxFilter( InputArray _src, OutputArray _dst, int ddepth,
Size ksize, Point anchor,
bool normalize, int borderType )
{
// 获取矩阵相关信息
Mat src = _src.getMat();
int sdepth = src.depth(), cn = src.channels();
if( ddepth < 0 )
ddepth = sdepth;
_dst.create( src.size(), CV_MAKETYPE(ddepth, cn) );
Mat dst = _dst.getMat();
// 边界因子设定
if( borderType != BORDER_CONSTANT && normalize )
{
if( src.rows == 1 )
ksize.height = 1;
if( src.cols == 1 )
ksize.width = 1;
}
// 盒子滤波基类生成
Ptr f = createBoxFilter( src.type(), dst.type(),
ksize, anchor, normalize, borderType );
// apply方法实现相关滤波操作
f->apply( src, dst );
}
转载:http://blog.csdn.net/zhuwei1988