原文作者:aircraft
知道旋转前后矩阵向量值 如何去求旋转矩阵R 的c++/c#代码???
因为需要用到矩阵处理库所以需要先配置
一、Eigen库的配置(VS2017)
然后在自己的VS工程属性中的这个附加包含进去
注意看清楚了 是D:\Dependencies\eigen-eigen\eigen-eigen; 前面部分是你们自己的路径 后面的这个eigen-eigen\eigen-eigen; 代表的意思解压是点击进去选择里面那个名字跟外面一样的
二、实现代码
#include #include#include"Eigen/Dense"#include"Eigen/LU"#include"Eigen/Core"
#define PI 3.1415926
double calculateAngle(const Eigen::Vector3d &vectorBefore, const Eigen::Vector3d &vectorAfter)
{doubleab, a1, b1, cosr;
ab= vectorBefore.x()*vectorAfter.x() + vectorBefore.y()*vectorAfter.y() + vectorBefore.z()*vectorAfter.z();
a1= sqrt(vectorBefore.x()*vectorBefore.x() + vectorBefore.y()*vectorBefore.y() + vectorBefore.z()*vectorBefore.z());
b1= sqrt(vectorAfter.x()*vectorAfter.x() + vectorAfter.y()*vectorAfter.y() + vectorAfter.z()*vectorAfter.z());
cosr= ab / a1 /b1;return (acos(cosr) * 180 /PI);
}
inline Eigen::Vector3d calculateRotAxis(const Eigen::Vector3d &vectorBefore, const Eigen::Vector3d &vectorAfter)
{return Eigen::Vector3d(vectorBefore.y()*vectorAfter.z() - vectorBefore.z()*vectorAfter.y(), \
vectorBefore.z()*vectorAfter.y() - vectorBefore.x()*vectorAfter.z(), \
vectorBefore.x()*vectorAfter.y() - vectorBefore.y()*vectorAfter.x());
}void rotationMatrix(const Eigen::Vector3d &vectorBefore, const Eigen::Vector3d &vectorAfter, Eigen::Matrix3d &rotMatrix)
{
Eigen::Vector3d vector=calculateRotAxis(vectorBefore, vectorAfter);double angle =calculateAngle(vectorBefore, vectorAfter);
Eigen::AngleAxisd rotationVector(angle, vector.normalized());
Eigen::Matrix3d rotationMatrix=Eigen::Matrix3d::Identity();
rotMatrix= rotationVector.toRotationMatrix();//所求旋转矩阵
}intmain()
{
Eigen::Matrix3d rotMatrix;
Eigen::Vector3d vectorBefore(0,0,1);
Eigen::Vector3d vectorAfter(1,0,0);
rotationMatrix(vectorBefore, vectorAfter, rotMatrix);
std::cout<< rotMatrix <<:endl>
system("pause");return 0;
}
三、实现原理
1.旋转角度
已知旋转前向量为P, 旋转后变为Q。由点积定义可知:
可推出P,Q之间的夹角为:
2. 旋转轴
由1中可知,旋转角所在的平面为有P和Q所构成的平面,那么旋转轴必垂直该平面。
假定旋转前向量为a(a1, a2, a3), 旋转后向量为b(b1, b2, b3)。由叉乘定义得:
所以旋转轴c(c1, c2, c3)为:
3. 罗德里格旋转公式(Rodrigues' rotation formula)
3.1 公式
已知单位向量 , 将它旋转θ角。由罗德里格旋转公式,可知对应的旋转矩阵 :
其中I是3x3的单位矩阵,
是叉乘中的反对称矩阵r:
3.2 公式证明
假设在坐标系(x, y, z)中,向量v=ax+by+cz,v绕z轴逆时针旋转θ角后得到新的向量v’。
根据2维(x,y)面上的旋转公式可得:
推出:
将上式中的叉乘表示为反对称矩阵得:
另外:
最终可以推出:
上式即为罗德里格旋转公式。
参考博客里的是c#的实现代码
我是参考完之后改了一个c++的版本出来
若有兴趣交流分享技术,可关注本人公众号,里面会不定期的分享各种编程教程,和共享源码,诸如研究分享关于c/c++,python,前端,后端,opencv,halcon,opengl,机器学习深度学习之类有关于基础编程,图像处理和机器视觉开发的知识