基于BERT的情感分析模型

目录
基于BERT的情感分析模型 1
一、 基于Transformer的词向量表示 1
各个词对 it 编码影响程度示意图 4
二、 数据收集及预处理 5

  1. 数据集 5
    2.文本预处理 6
    (1)数据清洗 6
    (2)文本分词 7
    (3)过滤停用词 7
    三、 基于BERT的情感分析模型 8
    输出层示意图 12
    四、 实验 14
    1.评价指标 14
    三分类混淆矩阵 14
    2.实验结果 16
    基于BERT的情感分析模型
    一、基于Transformer的词向量表示
    Word2vec 由词义的分布式假设出发,每一个单词被映射到一个唯一的稠密向量。这显然无法处理一词多义的问题:自然语言中每个词都有可能有多个不同的意思,那么如果需要用数值表示它的意思,或至少不应该是固定的某一向量。例如:
    例 2: ①The animal didn’t cross the street because it was too tired.
    ②The animal didn’t cross the street because it was too narrow.
    通过这两个句子可以看出,其中的 it 分别指代 animal 和 street,对于我们而言很容易区分其中的区别,然而对于计算机而言却并不容易。使用传统的 Word2vec 产生的词表示是静态的,不考虑上下文的,如果对两个 it 进行向量化表示,得到的词向量是一样的,这显然是有瑕疵的。
    在介绍 Transformer 之前先来介绍一下注意力机制(Attention Mechanism),注意力机制最早被应用于图像研究领域。它源于对人类大脑工作原理的分析,其本质上是注意力资源分配的模型。例如,当我们看图片时,我们的注意力肯定会集中在某个部分, 随着眼睛的移动,注意力又转移到图片的另一个部分。任何时刻我们的注意力分布是不一样的。Google 公司在 2017 年,将注意力机制定义为查询作用于键值的过程。注意力机制有三个主要元素:输入、查询和注意力矩阵。三者相结合,产生“注意力权重”,根据产生的权重就可以区分不同语境对目标词的重要性。文本情感分析领域内的注意力机制主要被归纳为三个模型:文本注意力、特征- 文本注意力与自注意力。这里主要介绍自注意力(self-attention),self-attention 机制包含了不止一个特征,每个单词都依次与句子中所有的但那次相互作用。每一个单词都会通过这一系列的和计算得到一个其本身在该语境中的输出特征。所以 self-attention 的输出是多个单词的注意力特征的集合。
    本文转载自:http://www.biyezuopin.vip/onews.asp?id=16514
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import csv
import os
import modeling
import optimization
import tokenization
import tensorflow as tf
import numpy as np
import globalvar as gl
flags = tf.flags

FLAGS = flags.FLAGS

## Required parameters
flags.DEFINE_string(
    "data_dir", None,
    "The input data dir. Should contain the .tsv files (or other data files) "
    "for the task.")

flags.DEFINE_string(
    "bert_config_file", None,
    "The config json file corresponding to the pre-trained BERT model. "
    "This specifies the model architecture.")

flags.DEFINE_string("task_name", None, "The name of the task to train.")

flags.DEFINE_string("vocab_file", None,
                    "The vocabulary file that the BERT model was trained on.")

flags.DEFINE_string(
    "output_dir", None,
    "The output directory where the model checkpoints will be written.")

## Other parameters

flags.DEFINE_string(
    "init_checkpoint", None,
    "Initial checkpoint (usually from a pre-trained BERT model).")

flags.DEFINE_bool(
    "do_lower_case", True,
    "Whether to lower case the input text. Should be True for uncased "
    "models and False for cased models.")

flags.DEFINE_integer(
    "max_seq_length", 128,
    "The maximum total input sequence length after WordPiece tokenization. "
    "Sequences longer than this will be truncated, and sequences shorter "
    "than this will be padded.")

flags.DEFINE_bool("do_train", False, "Whether to run training.")

flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.")

flags.DEFINE_bool(
    "do_predict", False,
    "Whether to run the model in inference mode on the test set.")

flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.")

flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.")

flags.DEFINE_integer("predict_batch_size", 8, "Total batch size for predict.")

flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.")

flags.DEFINE_float("num_train_epochs", 3.0,
                   "Total number of training epochs to perform.")

flags.DEFINE_float(
    "warmup_proportion", 0.1,
    "Proportion of training to perform linear learning rate warmup for. "
    "E.g., 0.1 = 10% of training.")

flags.DEFINE_integer("save_checkpoints_steps", 1000,
                     "How often to save the model checkpoint.")

flags.DEFINE_integer("iterations_per_loop", 1000,
                     "How many steps to make in each estimator call.")

flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")

tf.flags.DEFINE_string(
    "tpu_name", None,
    "The Cloud TPU to use for training. This should be either the name "
    "used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
    "url.")

tf.flags.DEFINE_string(
    "tpu_zone", None,
    "[Optional] GCE zone where the Cloud TPU is located in. If not "
    "specified, we will attempt to automatically detect the GCE project from "
    "metadata.")

tf.flags.DEFINE_string(
    "gcp_project", None,
    "[Optional] Project name for the Cloud TPU-enabled project. If not "
    "specified, we will attempt to automatically detect the GCE project from "
    "metadata.")

tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")

flags.DEFINE_integer(
    "num_tpu_cores", 8,
    "Only used if `use_tpu` is True. Total number of TPU cores to use.")


class InputExample(object):
  """A single training/test example for simple sequence classification."""

  def __init__(self, guid, text_a, text_b=None, label=None):
    """Constructs a InputExample.

    Args:
      guid: Unique id for the example.
      text_a: string. The untokenized text of the first sequence. For single
        sequence tasks, only this sequence must be specified.
      text_b: (Optional) string. The untokenized text of the second sequence.
        Only must be specified for sequence pair tasks.
      label: (Optional) string. The label of the example. This should be
        specified for train and dev examples, but not for test examples.
    """
    self.guid = guid
    self.text_a = text_a
    self.text_b = text_b
    self.label = label


class PaddingInputExample(object):
  """Fake example so the num input examples is a multiple of the batch size.

  When running eval/predict on the TPU, we need to pad the number of examples
  to be a multiple of the batch size, because the TPU requires a fixed batch
  size. The alternative is to drop the last batch, which is bad because it means
  the entire output data won't be generated.

  We use this class instead of `None` because treating `None` as padding
  battches could cause silent errors.
  """


class InputFeatures(object):
  """A single set of features of data."""

  def __init__(self,
               input_ids,
               input_mask,
               segment_ids,
               label_id,
               is_real_example=True):
    self.input_ids = input_ids
    self.input_mask = input_mask
    self.segment_ids = segment_ids
    self.label_id = label_id
    self.is_real_example = is_real_example


class DataProcessor(object):
  """Base class for data converters for sequence classification data sets."""

  def get_train_examples(self, data_dir):
    """Gets a collection of `InputExample`s for the train set."""
    raise NotImplementedError()

  def get_dev_examples(self, data_dir):
    """Gets a collection of `InputExample`s for the dev set."""
    raise NotImplementedError()

  def get_test_examples(self, data_dir):
    """Gets a collection of `InputExample`s for prediction."""
    raise NotImplementedError()

  def get_labels(self):
    """Gets the list of labels for this data set."""
    raise NotImplementedError()

  @classmethod
  def _read_tsv(cls, input_file, quotechar=None):
    """Reads a tab separated value file."""
    with tf.gfile.Open(input_file, "r") as f:
      reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
      lines = []
      for line in reader:
        lines.append(line)
      return lines

class SimProcessor(DataProcessor):
  """Base class for data converters for sequence classification data sets."""

  def get_train_examples(self, data_dir):
    """Gets a collection of `InputExample`s for the train set."""
    file_path=os.path.join(data_dir,'train.txt')
    f = open(file_path,'r',encoding='utf-8')
    train_data=[]
    index = 0
    for line in f.readlines():
        guid = "train-%d" % (index)
        line = line.replace('\n','').split('\t')
        text_a = tokenization.convert_to_unicode(str(line[1]))
        label = str(line[2])
        train_data.append(
            InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
        index = index+1
    return train_data

  def get_dev_examples(self, data_dir):
    """Gets a collection of `InputExample`s for the dev set."""
    file_path = os.path.join(data_dir, 'dev.txt')
    f = open(file_path, 'r', encoding='utf-8')
    dev_data = []
    index = 0
    for line in f.readlines():
        guid = "dev-%d" % (index)
        line = line.replace('\n', '').split('\t')
        text_a = tokenization.convert_to_unicode(str(line[1]))
        label = str(line[2])
        dev_data.append(
            InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
        index = index + 1
    return dev_data

  def get_test_examples(self, data_dir):
    path = gl.get_value('val_path')
    print(path)
    """Gets a collection of `InputExample`s for prediction."""
    test_data = []
    index = 0
    val_text = gl.get_value('val_text')
    if path == '打开文件':#获取手动输入内容
        val_text = gl.get_value('val_text')
        list = val_text.split('\n');
        for line in list:
            guid = "dev-%d" % (index)
            line = line.replace('\n', '').split('\t')
            text_a = tokenization.convert_to_unicode(str(line[1]))
            label = str(1)
            test_data.append(
                InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
            index = index + 1
    else:
        file_path = os.path.join(path)#获取文件输入内容
        f = open(file_path, 'r', encoding='utf-8')
        for line in f.readlines():
            guid = "dev-%d" % (index)
            line = line.replace('\n', '').split('\t')
            text_a = tokenization.convert_to_unicode(str(line[1]))
            label = str(1)
            test_data.append(
                InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
            index = index + 1
    return test_data

  def get_labels(self):
    """Gets the list of labels for this data set."""
    return ["0", "1", "2"]


class XnliProcessor(DataProcessor):
  """Processor for the XNLI data set."""

  def __init__(self):
    self.language = "zh"

  def get_train_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(
        os.path.join(data_dir, "multinli",
                     "multinli.train.%s.tsv" % self.language))
    examples = []
    for (i, line) in enumerate(lines):
      if i == 0:
        continue
      guid = "train-%d" % (i)
      text_a = tokenization.convert_to_unicode(line[0])
      text_b = tokenization.convert_to_unicode(line[1])
      label = tokenization.convert_to_unicode(line[2])
      if label == tokenization.convert_to_unicode("contradictory"):
        label = tokenization.convert_to_unicode("contradiction")
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "xnli.dev.tsv"))
    examples = []
    for (i, line) in enumerate(lines):
      if i == 0:
        continue
      guid = "dev-%d" % (i)
      language = tokenization.convert_to_unicode(line[0])
      if language != tokenization.convert_to_unicode(self.language):
        continue
      text_a = tokenization.convert_to_unicode(line[6])
      text_b = tokenization.convert_to_unicode(line[7])
      label = tokenization.convert_to_unicode(line[1])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]


class MnliProcessor(DataProcessor):
  """Processor for the MultiNLI data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
        "dev_matched")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test_matched.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  def _create_examples(self, lines, set_type):
    """Creates examples for the training and dev sets."""
    examples = []
    for (i, line) in enumerate(lines):
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, tokenization.convert_to_unicode(line[0]))
      text_a = tokenization.convert_to_unicode(line[8])
      text_b = tokenization.convert_to_unicode(line[9])
      if set_type == "test":
        label = "contradiction"
      else:
        label = tokenization.convert_to_unicode(line[-1])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


class MrpcProcessor(DataProcessor):
  """Processor for the MRPC data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  def _create_examples(self, lines, set_type):
    """Creates examples for the training and dev sets."""
    examples = []
    for (i, line) in enumerate(lines):
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, i)
      text_a = tokenization.convert_to_unicode(line[3])
      text_b = tokenization.convert_to_unicode(line[4])
      if set_type == "test":
        label = "0"
      else:
        label = tokenization.convert_to_unicode(line[0])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


class ColaProcessor(DataProcessor):
  """Processor for the CoLA data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  def _create_examples(self, lines, set_type):
    """Creates examples for the training and dev sets."""
    examples = []
    for (i, line) in enumerate(lines):
      # Only the test set has a header
      if set_type == "test" and i == 0:
        continue
      guid = "%s-%s" % (set_type, i)
      if set_type == "test":
        text_a = tokenization.convert_to_unicode(line[1])
        label = "0"
      else:
        text_a = tokenization.convert_to_unicode(line[3])
        label = tokenization.convert_to_unicode(line[1])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
    return examples


def convert_single_example(ex_index, example, label_list, max_seq_length,
                           tokenizer):
  """Converts a single `InputExample` into a single `InputFeatures`."""

  if isinstance(example, PaddingInputExample):
    return InputFeatures(
        input_ids=[0] * max_seq_length,
        input_mask=[0] * max_seq_length,
        segment_ids=[0] * max_seq_length,
        label_id=0,
        is_real_example=False)

  label_map = {}
  for (i, label) in enumerate(label_list):
    label_map[label] = i

  tokens_a = tokenizer.tokenize(example.text_a)
  tokens_b = None
  if example.text_b:
    tokens_b = tokenizer.tokenize(example.text_b)

  if tokens_b:
    # Modifies `tokens_a` and `tokens_b` in place so that the total
    # length is less than the specified length.
    # Account for [CLS], [SEP], [SEP] with "- 3"
    _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
  else:
    # Account for [CLS] and [SEP] with "- 2"
    if len(tokens_a) > max_seq_length - 2:
      tokens_a = tokens_a[0:(max_seq_length - 2)]

  # The convention in BERT is:
  # (a) For sequence pairs:
  #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
  #  type_ids: 0     0  0    0    0     0       0 0     1  1  1  1   1 1
  # (b) For single sequences:
  #  tokens:   [CLS] the dog is hairy . [SEP]
  #  type_ids: 0     0   0   0  0     0 0
  #
  # Where "type_ids" are used to indicate whether this is the first
  # sequence or the second sequence. The embedding vectors for `type=0` and
  # `type=1` were learned during pre-training and are added to the wordpiece
  # embedding vector (and position vector). This is not *strictly* necessary
  # since the [SEP] token unambiguously separates the sequences, but it makes
  # it easier for the model to learn the concept of sequences.
  #
  # For classification tasks, the first vector (corresponding to [CLS]) is
  # used as the "sentence vector". Note that this only makes sense because
  # the entire model is fine-tuned.
  tokens = []
  segment_ids = []
  tokens.append("[CLS]")
  segment_ids.append(0)
  for token in tokens_a:
    tokens.append(token)
    segment_ids.append(0)
  tokens.append("[SEP]")
  segment_ids.append(0)

  if tokens_b:
    for token in tokens_b:
      tokens.append(token)
      segment_ids.append(1)
    tokens.append("[SEP]")
    segment_ids.append(1)

  input_ids = tokenizer.convert_tokens_to_ids(tokens)

  # The mask has 1 for real tokens and 0 for padding tokens. Only real
  # tokens are attended to.
  input_mask = [1] * len(input_ids)

  # Zero-pad up to the sequence length.
  while len(input_ids) < max_seq_length:
    input_ids.append(0)
    input_mask.append(0)
    segment_ids.append(0)

  assert len(input_ids) == max_seq_length
  assert len(input_mask) == max_seq_length
  assert len(segment_ids) == max_seq_length

  label_id = label_map[example.label]
  L = gl.get_value('pre_deal')
  if ex_index < 20000:
    tf.logging.info("*** Example ***")
    tf.logging.info("guid: %s" % (example.guid))
    tf.logging.info("tokens: %s" % " ".join(
        [tokenization.printable_text(x) for x in tokens]))
    tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
    tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
    tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
    tf.logging.info("label: %s (id = %d)" % (example.label, label_id))
    output_line = "*** Example ***" + "\n" + "guid: %s" % (example.guid) + "\n" + "tokens: %s" % " ".join(
        [tokenization.printable_text(x) for x in tokens]) + "\n"+"input_ids: %s" % " ".join([str(x) for x in input_ids])+"\n"
            # output_line = "\t".join(
            #   str(class_probability)
            #  for class_probability in probabilities) +"\t"+str(np.argmax(probabilities))+ "\n"
    L=L+output_line
    gl.set_value('pre_deal',L)
    print("ok")


  feature = InputFeatures(
      input_ids=input_ids,
      input_mask=input_mask,
      segment_ids=segment_ids,
      label_id=label_id,
      is_real_example=True)
  return feature


def file_based_convert_examples_to_features(
    examples, label_list, max_seq_length, tokenizer, output_file):
  """Convert a set of `InputExample`s to a TFRecord file."""
  gl._init()
  L=''
  gl.set_value('pre_deal', L)
  writer = tf.python_io.TFRecordWriter(output_file)

  for (ex_index, example) in enumerate(examples):
    if ex_index % 10000 == 0:
      tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))

    feature = convert_single_example(ex_index, example, label_list,
                                     max_seq_length, tokenizer)

    def create_int_feature(values):
      f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
      return f

    features = collections.OrderedDict()
    features["input_ids"] = create_int_feature(feature.input_ids)
    features["input_mask"] = create_int_feature(feature.input_mask)
    features["segment_ids"] = create_int_feature(feature.segment_ids)
    features["label_ids"] = create_int_feature([feature.label_id])
    features["is_real_example"] = create_int_feature(
        [int(feature.is_real_example)])

    tf_example = tf.train.Example(features=tf.train.Features(feature=features))
    writer.write(tf_example.SerializeToString())
  L = gl.get_value('pre_deal')
  output_predict_file = os.path.join(FLAGS.output_dir, "test_results_3.txt")
  with tf.gfile.GFile(output_predict_file, "w") as writer:
      writer.write(L)
  writer.close()


def file_based_input_fn_builder(input_file, seq_length, is_training,
                                drop_remainder):
  """Creates an `input_fn` closure to be passed to TPUEstimator."""

  name_to_features = {
      "input_ids": tf.FixedLenFeature([seq_length], tf.int64),
      "input_mask": tf.FixedLenFeature([seq_length], tf.int64),
      "segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
      "label_ids": tf.FixedLenFeature([], tf.int64),
      "is_real_example": tf.FixedLenFeature([], tf.int64),
  }

  def _decode_record(record, name_to_features):
    """Decodes a record to a TensorFlow example."""
    example = tf.parse_single_example(record, name_to_features)

    # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
    # So cast all int64 to int32.
    for name in list(example.keys()):
      t = example[name]
      if t.dtype == tf.int64:
        t = tf.to_int32(t)
      example[name] = t

    return example

  def input_fn(params):
    """The actual input function."""
    batch_size = params["batch_size"]

    # For training, we want a lot of parallel reading and shuffling.
    # For eval, we want no shuffling and parallel reading doesn't matter.
    d = tf.data.TFRecordDataset(input_file)
    if is_training:
      d = d.repeat()
      d = d.shuffle(buffer_size=100)

    d = d.apply(
        tf.contrib.data.map_and_batch(
            lambda record: _decode_record(record, name_to_features),
            batch_size=batch_size,
            drop_remainder=drop_remainder))

    return d

  return input_fn


def _truncate_seq_pair(tokens_a, tokens_b, max_length):
  """Truncates a sequence pair in place to the maximum length."""

  # This is a simple heuristic which will always truncate the longer sequence
  # one token at a time. This makes more sense than truncating an equal percent
  # of tokens from each, since if one sequence is very short then each token
  # that's truncated likely contains more information than a longer sequence.
  while True:
    total_length = len(tokens_a) + len(tokens_b)
    if total_length <= max_length:
      break
    if len(tokens_a) > len(tokens_b):
      tokens_a.pop()
    else:
      tokens_b.pop()


def create_model(bert_config, is_training, input_ids, input_mask, segment_ids,
                 labels, num_labels, use_one_hot_embeddings):
  """Creates a classification model."""
  model = modeling.BertModel(
      config=bert_config,
      is_training=is_training,
      input_ids=input_ids,
      input_mask=input_mask,
      token_type_ids=segment_ids,
      use_one_hot_embeddings=use_one_hot_embeddings)

  # In the demo, we are doing a simple classification task on the entire
  # segment.
  #
  # If you want to use the token-level output, use model.get_sequence_output()
  # instead.
  output_layer = model.get_pooled_output()

  hidden_size = output_layer.shape[-1].value

  output_weights = tf.get_variable(
      "output_weights", [num_labels, hidden_size],
      initializer=tf.truncated_normal_initializer(stddev=0.02))

  output_bias = tf.get_variable(
      "output_bias", [num_labels], initializer=tf.zeros_initializer())

  with tf.variable_scope("loss"):
    if is_training:
      # I.e., 0.1 dropout
      output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)

    logits = tf.matmul(output_layer, output_weights, transpose_b=True)
    logits = tf.nn.bias_add(logits, output_bias)
    probabilities = tf.nn.softmax(logits, axis=-1)
    log_probs = tf.nn.log_softmax(logits, axis=-1)

    one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)

    per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
    loss = tf.reduce_mean(per_example_loss)

    return (loss, per_example_loss, logits, probabilities)


def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
                     num_train_steps, num_warmup_steps, use_tpu,
                     use_one_hot_embeddings):
  """Returns `model_fn` closure for TPUEstimator."""

  def model_fn(features, labels, mode, params):  # pylint: disable=unused-argument
    """The `model_fn` for TPUEstimator."""

    tf.logging.info("*** Features ***")
    for name in sorted(features.keys()):
      tf.logging.info("  name = %s, shape = %s" % (name, features[name].shape))

    input_ids = features["input_ids"]
    input_mask = features["input_mask"]
    segment_ids = features["segment_ids"]
    label_ids = features["label_ids"]
    is_real_example = None
    if "is_real_example" in features:
      is_real_example = tf.cast(features["is_real_example"], dtype=tf.float32)
    else:
      is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32)

    is_training = (mode == tf.estimator.ModeKeys.TRAIN)

    (total_loss, per_example_loss, logits, probabilities) = create_model(
        bert_config, is_training, input_ids, input_mask, segment_ids, label_ids,
        num_labels, use_one_hot_embeddings)

    tvars = tf.trainable_variables()
    initialized_variable_names = {}
    scaffold_fn = None
    if init_checkpoint:
      (assignment_map, initialized_variable_names
      ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
      if use_tpu:

        def tpu_scaffold():
          tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
          return tf.train.Scaffold()

        scaffold_fn = tpu_scaffold
      else:
        tf.train.init_from_checkpoint(init_checkpoint, assignment_map)

    tf.logging.info("**** Trainable Variables ****")
    for var in tvars:
      init_string = ""
      if var.name in initialized_variable_names:
        init_string = ", *INIT_FROM_CKPT*"
      tf.logging.info("  name = %s, shape = %s%s", var.name, var.shape,
                      init_string)

    output_spec = None
    if mode == tf.estimator.ModeKeys.TRAIN:

      train_op = optimization.create_optimizer(
          total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)

      output_spec = tf.contrib.tpu.TPUEstimatorSpec(
          mode=mode,
          loss=total_loss,
          train_op=train_op,
          scaffold_fn=scaffold_fn)
    elif mode == tf.estimator.ModeKeys.EVAL:

      def metric_fn(per_example_loss, label_ids, logits, is_real_example):
        predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
        accuracy = tf.metrics.accuracy(
            labels=label_ids, predictions=predictions, weights=is_real_example)
        loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example)
        return {
            "eval_accuracy": accuracy,
            "eval_loss": loss,
        }

      eval_metrics = (metric_fn,
                      [per_example_loss, label_ids, logits, is_real_example])
      output_spec = tf.contrib.tpu.TPUEstimatorSpec(
          mode=mode,
          loss=total_loss,
          eval_metrics=eval_metrics,
          scaffold_fn=scaffold_fn)
    else:
      output_spec = tf.contrib.tpu.TPUEstimatorSpec(
          mode=mode,
          predictions={"probabilities": probabilities},
          scaffold_fn=scaffold_fn)
    return output_spec

  return model_fn


# This function is not used by this file but is still used by the Colab and
# people who depend on it.
def input_fn_builder(features, seq_length, is_training, drop_remainder):
  """Creates an `input_fn` closure to be passed to TPUEstimator."""

  all_input_ids = []
  all_input_mask = []
  all_segment_ids = []
  all_label_ids = []

  for feature in features:
    all_input_ids.append(feature.input_ids)
    all_input_mask.append(feature.input_mask)
    all_segment_ids.append(feature.segment_ids)
    all_label_ids.append(feature.label_id)

  def input_fn(params):
    """The actual input function."""
    batch_size = params["batch_size"]

    num_examples = len(features)

    # This is for demo purposes and does NOT scale to large data sets. We do
    # not use Dataset.from_generator() because that uses tf.py_func which is
    # not TPU compatible. The right way to load data is with TFRecordReader.
    d = tf.data.Dataset.from_tensor_slices({
        "input_ids":
            tf.constant(
                all_input_ids, shape=[num_examples, seq_length],
                dtype=tf.int32),
        "input_mask":
            tf.constant(
                all_input_mask,
                shape=[num_examples, seq_length],
                dtype=tf.int32),
        "segment_ids":
            tf.constant(
                all_segment_ids,
                shape=[num_examples, seq_length],
                dtype=tf.int32),
        "label_ids":
            tf.constant(all_label_ids, shape=[num_examples], dtype=tf.int32),
    })

    if is_training:
      d = d.repeat()
      d = d.shuffle(buffer_size=100)

    d = d.batch(batch_size=batch_size, drop_remainder=drop_remainder)
    return d

  return input_fn


# This function is not used by this file but is still used by the Colab and
# people who depend on it.
def convert_examples_to_features(examples, label_list, max_seq_length,
                                 tokenizer):
  """Convert a set of `InputExample`s to a list of `InputFeatures`."""

  features = []
  for (ex_index, example) in enumerate(examples):
    if ex_index % 10000 == 0:
      tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))

    feature = convert_single_example(ex_index, example, label_list,
                                     max_seq_length, tokenizer)

    features.append(feature)
  return features

def run(_):
  tf.logging.set_verbosity(tf.logging.INFO)

  processors = {
      "cola": ColaProcessor,
      "mnli": MnliProcessor,
      "mrpc": MrpcProcessor,
      "xnli": XnliProcessor,
      "sim" : SimProcessor,
  }

  tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case,
                                                FLAGS.init_checkpoint)

  if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_predict:
    raise ValueError(
        "At least one of `do_train`, `do_eval` or `do_predict' must be True.")

  bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)

  if FLAGS.max_seq_length > bert_config.max_position_embeddings:
    raise ValueError(
        "Cannot use sequence length %d because the BERT model "
        "was only trained up to sequence length %d" %
        (FLAGS.max_seq_length, bert_config.max_position_embeddings))

  tf.gfile.MakeDirs(FLAGS.output_dir)

  task_name = FLAGS.task_name.lower()

  if task_name not in processors:
    raise ValueError("Task not found: %s" % (task_name))

  processor = processors[task_name]()

  label_list = processor.get_labels()

  tokenizer = tokenization.FullTokenizer(
      vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)

  tpu_cluster_resolver = None
  if FLAGS.use_tpu and FLAGS.tpu_name:
    tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
        FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)

  is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
  run_config = tf.contrib.tpu.RunConfig(
      cluster=tpu_cluster_resolver,
      master=FLAGS.master,
      model_dir=FLAGS.output_dir,
      save_checkpoints_steps=FLAGS.save_checkpoints_steps,
      tpu_config=tf.contrib.tpu.TPUConfig(
          iterations_per_loop=FLAGS.iterations_per_loop,
          num_shards=FLAGS.num_tpu_cores,
          per_host_input_for_training=is_per_host))

  train_examples = None
  num_train_steps = None
  num_warmup_steps = None
  if FLAGS.do_train:
    train_examples = processor.get_train_examples(FLAGS.data_dir)
    num_train_steps = int(
        len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs)
    num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)

  model_fn = model_fn_builder(
      bert_config=bert_config,
      num_labels=len(label_list),
      init_checkpoint=FLAGS.init_checkpoint,
      learning_rate=FLAGS.learning_rate,
      num_train_steps=num_train_steps,
      num_warmup_steps=num_warmup_steps,
      use_tpu=FLAGS.use_tpu,
      use_one_hot_embeddings=FLAGS.use_tpu)

  # If TPU is not available, this will fall back to normal Estimator on CPU
  # or GPU.
  estimator = tf.contrib.tpu.TPUEstimator(
      use_tpu=FLAGS.use_tpu,
      model_fn=model_fn,
      config=run_config,
      train_batch_size=FLAGS.train_batch_size,
      eval_batch_size=FLAGS.eval_batch_size,
      predict_batch_size=FLAGS.predict_batch_size)

  if FLAGS.do_train:
    train_file = os.path.join(FLAGS.output_dir, "train.tf_record")
    file_based_convert_examples_to_features(
        train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file)
    tf.logging.info("***** Running training *****")
    tf.logging.info("  Num examples = %d", len(train_examples))
    tf.logging.info("  Batch size = %d", FLAGS.train_batch_size)
    tf.logging.info("  Num steps = %d", num_train_steps)
    train_input_fn = file_based_input_fn_builder(
        input_file=train_file,
        seq_length=FLAGS.max_seq_length,
        is_training=True,
        drop_remainder=True)
    estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)

  if FLAGS.do_eval:
    eval_examples = processor.get_dev_examples(FLAGS.data_dir)
    num_actual_eval_examples = len(eval_examples)
    if FLAGS.use_tpu:
      # TPU requires a fixed batch size for all batches, therefore the number
      # of examples must be a multiple of the batch size, or else examples
      # will get dropped. So we pad with fake examples which are ignored
      # later on. These do NOT count towards the metric (all tf.metrics
      # support a per-instance weight, and these get a weight of 0.0).
      while len(eval_examples) % FLAGS.eval_batch_size != 0:
        eval_examples.append(PaddingInputExample())

    eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record")
    file_based_convert_examples_to_features(
        eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file)

    tf.logging.info("***** Running evaluation *****")
    tf.logging.info("  Num examples = %d (%d actual, %d padding)",
                    len(eval_examples), num_actual_eval_examples,
                    len(eval_examples) - num_actual_eval_examples)
    tf.logging.info("  Batch size = %d", FLAGS.eval_batch_size)

    # This tells the estimator to run through the entire set.
    eval_steps = None
    # However, if running eval on the TPU, you will need to specify the
    # number of steps.
    if FLAGS.use_tpu:
      assert len(eval_examples) % FLAGS.eval_batch_size == 0
      eval_steps = int(len(eval_examples) // FLAGS.eval_batch_size)

    eval_drop_remainder = True if FLAGS.use_tpu else False
    eval_input_fn = file_based_input_fn_builder(
        input_file=eval_file,
        seq_length=FLAGS.max_seq_length,
        is_training=False,
        drop_remainder=eval_drop_remainder)

    result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps)

    output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
    with tf.gfile.GFile(output_eval_file, "w") as writer:
      tf.logging.info("***** Eval results *****")
      for key in sorted(result.keys()):
        tf.logging.info("  %s = %s", key, str(result[key]))
        writer.write("%s = %s\n" % (key, str(result[key])))

  if FLAGS.do_predict:
    predict_examples = processor.get_test_examples(FLAGS.data_dir)
    num_actual_predict_examples = len(predict_examples)
    if FLAGS.use_tpu:
      # TPU requires a fixed batch size for all batches, therefore the number
      # of examples must be a multiple of the batch size, or else examples
      # will get dropped. So we pad with fake examples which are ignored
      # later on.
      while len(predict_examples) % FLAGS.predict_batch_size != 0:
        predict_examples.append(PaddingInputExample())

    predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record")#把数据转化为tf_record格式输出
    file_based_convert_examples_to_features(predict_examples, label_list,
                                            FLAGS.max_seq_length, tokenizer,
                                            predict_file)

    tf.logging.info("***** Running prediction*****")
    tf.logging.info("  Num examples = %d (%d actual, %d padding)",
                    len(predict_examples), num_actual_predict_examples,
                    len(predict_examples) - num_actual_predict_examples)
    tf.logging.info("  Batch size = %d", FLAGS.predict_batch_size)

    predict_drop_remainder = True if FLAGS.use_tpu else False
    predict_input_fn = file_based_input_fn_builder(
        input_file=predict_file,
        seq_length=FLAGS.max_seq_length,
        is_training=False,
        drop_remainder=predict_drop_remainder)

    result = estimator.predict(input_fn=predict_input_fn)

    output_predict_file = os.path.join(FLAGS.output_dir, "test_results_1.txt")
    with tf.gfile.GFile(output_predict_file, "w") as writer:
      num_written_lines = 0
      tf.logging.info("***** Predict results *****")
      for (i, prediction) in enumerate(result):
        probabilities = prediction["probabilities"]
        if i >= num_actual_predict_examples:
          break
        index = np.argmax(probabilities)
        if index == 0:
            output_line = str(i+1)+"\t"+predict_examples[i].text_a+"\t"+"无情感倾向"+ "\n"
        elif index == 1:
            output_line = str(i+1)+"\t"+predict_examples[i].text_a+"\t"+"正向情感倾向"+ "\n"
        elif index == 2:
            output_line = str(i+1)+"\t"+predict_examples[i].text_a+"\t"+"负向情感倾向"+ "\n"
        #output_line = "\t".join(
         #   str(class_probability)
          #  for class_probability in probabilities) +"\t"+str(np.argmax(probabilities))+ "\n"
        writer.write(output_line)
        num_written_lines += 1
    assert num_written_lines == num_actual_predict_examples
    print("ok")



def runn():
    flags.mark_flag_as_required("data_dir")
    flags.mark_flag_as_required("task_name")
    flags.mark_flag_as_required("vocab_file")
    flags.mark_flag_as_required("bert_config_file")
    flags.mark_flag_as_required("output_dir")
    tf.app.run(run)


if __name__ == "__main__":
  flags.mark_flag_as_required("data_dir")
  flags.mark_flag_as_required("task_name")
  flags.mark_flag_as_required("vocab_file")
  flags.mark_flag_as_required("bert_config_file")
  flags.mark_flag_as_required("output_dir")
  tf.app.run(run)

基于BERT的情感分析模型_第1张图片
基于BERT的情感分析模型_第2张图片
基于BERT的情感分析模型_第3张图片
基于BERT的情感分析模型_第4张图片
基于BERT的情感分析模型_第5张图片
基于BERT的情感分析模型_第6张图片
基于BERT的情感分析模型_第7张图片
基于BERT的情感分析模型_第8张图片
基于BERT的情感分析模型_第9张图片
基于BERT的情感分析模型_第10张图片

你可能感兴趣的:(bert,深度学习,机器学习,情感分析模型,课程设计)